Solution;
Given;
"m=5.0kg"
"Q_A=9585kJ"
"P_1=0.4MPa"
Vessel is rigid, meaning;
"V_1=V_2"
"P_2=2.0MPa"
"T_2=700\u00b0c=973K"
Heat added;
"Q_A=m(h_2-h_1)"
From steam tables,at 700°c and 2.0MPa;
"h_2=3923.81kJ\/kg"
Therefore;
"9585=5\u00d7(3923.81-h_1)"
"h_1=\\frac{19619.05-9585}{5}"
"h_1=2006.81kJ\/kg"
From steam tables ,at 0.4MPa and h1=2006.81kJ/kg;
"h_f=604.37kJ\/kg"
"h_g=2737.68kJ\/kg"
"v_f=0.001084m^3\/kg"
"v_g=0.4624m^3\/kg"
"u_g=2552.74kJ\/kg"
"u_f=603.93kJ\/kg"
"h_1=h_{f_1}+xh_{g_1}" ="h_f+x(h_g-h_f)"
"2006.81=604.37+x(2737.68-604.37)"
"x=0.657"
Take;
"v_1=v_f+x(v_g-v_g)"
"v_1=0.001084+0.657(0.4624-0.001084)"
Hence,the specific volume is;
"v_1=0.3043m^3\/kg"
To calculate internal energy;
"u=u_f+x(u_g-u_f)"
"u=603.93+0.657(2552.74-603.93)"
Hence the internal energy is;
"u=1884.29kJ\/kg"
Comments
Leave a comment