5. Find the heat flow rate
through the composite wall as shown in
Fig. 15.12. Assume one dimensional flow.
kA = 150 W/m°C,
kB = 30 W/m°C,
kC = 65 W/m°C and
kD = 50 W/m°C.
The thermal circuit for heat flow in the given composite system (shown in Fig. 15.12) has been illustrated in Fig. 15.13.
Thickness :
"L_A= 3\\; cm= 0.03 \\;m \\\\\n\nL_B=L_C=8 \\;cm = 0.08 \\;m \\\\\n\nL_D= 5 \\;cm = 0.05 \\;m"
Areas :
"A_A= 0.1 \\times 0.1 = 0.01 \\;m^2 \\\\\n\nA_B= 0.1 \\times 0.03 = 0.003 \\;m^2 \\\\\n\nA_C= 0.1 \\times 0.07 = 0.007 \\;m^2 \\\\\n\nA_D= 0.1 \\times 0.1 = 0.01 \\;m^2"
Heat flow rate, Q :
The thermal resistances are given by
"R_{th-A}= \\frac{L_A}{k_AA_A}= \\frac{0.03}{150 \\times 0.01}= 0.02 \\\\\n\nR_{th-B}= \\frac{L_B}{k_BA_B}= \\frac{0.08}{30 \\times 0.003}= 0.89 \\\\\n\nR_{th-C}= \\frac{L_C}{k_CA_C}= \\frac{0.08}{65 \\times 0.007}= 0.176 \\\\\n\nR_{th-D}= \\frac{L_D}{k_DA_D}= \\frac{0.05}{50 \\times 0.01}= 0.1"
The equivalent thermal resistance for the parallel thermal resistances "R_{th\u2013B}" and "R_{th\u2013C}" is given by:
"\\frac{1}{(R_{th})_{eq.}} = \\frac{1}{R_{th-B}} + \\frac{1}{R_{th-C}} = \\frac{1}{0.89} + \\frac{1}{0.176} = 6.805 \\\\\n\n(R_{th})_{eq.}= \\frac{1}{6.805}= 0.147"
Now, the total thermal resistance is given by
"(R_{th})_{total}= R_{th-A} + (R_{th})_{eq.} + R_{th-D} \\\\\n\n= 0.02+ 0.147+0.1=0.267 \\\\\n\nQ= \\frac{(\u2206t)_{overall}}{(R_{th})_{total}}= \\frac{400-60}{0.267}= 1273.4 \\;W"
Comments
Leave a comment