A furnace wall is made up of three layers of thicknesses 250 mm, 100 mm
and 150 mm with thermal conductivities of 1.65, k and 9.2 W/m°C respectively. The inside is
exposed to gases at 1250°C with a convection coefficient of 25 W/m2°C and the inside surface is
at 1100°C, the outside surface is exposed air at 25°C with convection coefficient of 12 W/m2°C.
Determine :
(i) The unknown thermal conductivity ‘k’ ;
(ii) The overall heat transfer coefficient ;
(iii) All surface temperatures.
"L_A = 250\\; mm = 0.25 \\;m \\\\\n\nL_B= 100 \\;mm = 0.1 \\;m \\\\\n\nL_C = 150 \\;mm = 0.15\\; m \\\\\n\nk_A = 1.65 \\;W\/m\u00b0C \\\\\n\nk_C=9.2 \\;W\/m\u00b0C \\\\\n\nt_{hf}= 1250 \\;\u00b0C \\\\\n\nt_1= 1100 \\;\u00b0C \\\\\n\nh_{hf}= 25 \\; W\/m^2\u00b0C \\\\\n\nh_{cf}= 12 \\;W\/m^2 \u00b0C"
(i) Thermal conductivity, k (= k B ) :
The rate of heat transfer per unit area of the furnace wall,
"q=h_{hf}(t_{hf}-t_1) \\\\\n\n= 25(1250-1100) = 3750 \\;W\/m^2 \\\\\n\nq= \\frac{(\u0394T)_{overall}}{(R_{th})_{total}} \\\\\n\nq= \\frac{(t_{hf}-t_{cf})}{(R_{th})_{conv-hf} -R_{th-A}+ R_{th-B} +R_{th-C}+(R_{th})_{conv-cf}} \\\\\n\n3750 = \\frac{1250-25}{\\frac{1}{h_{hf}} + \\frac{L_A}{k_A} + \\frac{L_B}{k_B} + \\frac{L_C}{k_C} + \\frac{1}{h_{cf}} } \\\\\n\n3750 = \\frac{1225}{\\frac{1}{25} + \\frac{0.25}{1.65} + \\frac{0.1}{k_B} + \\frac{0.15}{9.2} + \\frac{1}{12} } \\\\\n\n= \\frac{1225}{0.04 + 0.1515 + \\frac{0.1}{k_B} + 0.0163 + 0.0833 } \\\\\n\n= \\frac{1225}{0.2911 + \\frac{0.1}{k_B}} \\\\\n\n3750 (0.289 + \\frac{0.1}{k_B}) = 1225 \\\\\n\n\\frac{0.1}{k_B}= \\frac{1225}{3750} -0.2911 = 0.0355 \\\\\n\nk_B= k= \\frac{0.1}{0.0355} = 2.817 \\; W\/m^2\u00b0C"
(ii) The overall transfer coefficient, U :
The overall heat transfer coefficient,
"U= \\frac{1}{(R_{th})_{total}} \\\\\n\n(R_{th})_{total} = \\frac{1}{25} + \\frac{0.25}{1.65} + \\frac{0.1}{2.817} + \\frac{0.15}{9.2} + \\frac{1}{12} \\\\\n\n= 0.04 + 0.1515+0.0355+0.0163+0.0833 = 0.3266 \\;\u00b0C \\;m^2\/W \\\\\n\nU= \\frac{1}{0.3266}= 3.06 \\;W\/m^2 \u00b0C"
(iii) All surface temperature ; t1 , t2 , t3 , t4 :
"q=q_A=q_B=q_c \\\\\n\n3750 = \\frac{t_1-t_2}{L_A\/k_A} = \\frac{t_2-t_3}{L_B\/k_B} = \\frac{t_3-t_4}{L_C\/k_C} \\\\\n\n3750 = \\frac{1110 -t_2}{0.25\/1.65} \\\\\n\nt_2= 1100 -3750 \\times \\frac{0.25}{1.65} = 531.8 \\;\u00b0C \\\\\n\n3750 = \\frac{531.8 -t_3}{0.1\/2.817} \\\\\n\nt_3= 531.8 -3750 \\times \\frac{0.1}{2.817} = 398.6 \\;\u00b0C \\\\\n\n3750 = \\frac{398.6 -t_4}{0.15\/9.2} \\\\\n\nt_4= 398.6 -3750 \\times \\frac{0.15}{9.2} = 337.5 \\;\u00b0C"
Check using outside conversion,
"q= \\frac{337.5-25}{1\/h_{cf}}= \\frac{337.5-25}{1\/12}=3750 \\;W\/m^2"
Comments
Leave a comment