Gives
L=10 m
"d_1=7.7m\\\\L'=\\frac{L}{3}"
Mass(m)=40kg
"\\mu_k=0.53"
"\\theta=cos^{-1}(\\frac{7.7}{10})=15\u00b0"
"\\sum{F_y}=0"
0=-Mg-mg+N
N=(m+M)g=(40+M)g
"F_R=\\mu_kN"
"F=0.53\\times(40+M)"
According to daigram
"0+Mgd_1+Mgd_2-Fd_3"
"d_1=\\frac{L}{3},d_2=\\frac{Lsin\\theta}{2},d_3=Lcos\\theta"
Put value
"F=\\frac{\\frac{mgsin15}{3}+mg\\frac{L}{2}sin15-F(Lcos15)}{cos15}=109.4N"
"109.4=0.53\\times{(40+M)}\\\\M=65.5kg"
Comments
Leave a comment