Gives
L=10 m
d1=7.7mL′=3L
Mass(m)=40kg
μk=0.53
θ=cos−1(107.7)=15°
∑Fy=0
0=-Mg-mg+N
N=(m+M)g=(40+M)g
FR=μkN
F=0.53×(40+M)
According to daigram
0+Mgd1+Mgd2−Fd3
d1=3L,d2=2Lsinθ,d3=Lcosθ
Put value
F(cosθ)=3mgsinθ+mg2Lsinθ−F(Lcosθ)
F=cos153mgsin15+mg2Lsin15−F(Lcos15)=109.4N 109.4=0.53×(40+M)M=65.5kg
Comments