Answer to Question #220347 in Molecular Physics | Thermodynamics for Happiness Edobo

Question #220347
Show that p1v1^gamma =p2v2^gamma
1
Expert's answer
2021-07-25T09:24:00-0400

Answer:-

We know from the 1st law of thermodynamics

dq=du+dwdq=du+dw

For an adiabatic process, we can say dQ=0,

so, dU+dW=0=dU+PdV......1dU+dW=0=dU+PdV......1

We know, dU=nCvdT.....2dU=nCvdT.....2

For an ideal gas, 

PV=nRTPV=nRT

Or, T=PVnRT={PV\over nR}

or, dT=PdV+VdPnRdT={PdV+VdP\over nR}

Putting in 2,we get,

dU=CvR(PdV+VdP)dU={C_v\over R}(PdV+VdP)

Putting this value of dU in 1 we get,

dPP=dVVCv+RCv{dP\over P}=−{dV\over V}{C_v+R\over C_v}

or, dPP=dVVγ{dP\over P}=−{dV\over V}⋅γ (as γ=CpCv=Cv+RCvγ={Cp\over Cv}={Cv+R\over Cv} )

or,dPP=γdVV∫{dP\over P}=−γ∫{dV\over V}

or, lnP=γlnV+clnP=−γlnV+c

or, lnP+γlnV=klnP+γlnV=k

or, lnP+lnVγ=klnP+lnV^γ=k

or,ln(PVγ)=kln(PV^γ)=k

so, PVγ=constantPV^γ = constant

So it can also be written as

P1V1γ=P2V2γP_1V_1^γ=P_2V_2^γ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment