Answer:-
We know from the 1st law of thermodynamics
"dq=du+dw"
For an adiabatic process, we can say dQ=0,
so, "dU+dW=0=dU+PdV......1"
We know, "dU=nCvdT.....2"
For an ideal gas,
"PV=nRT"
Or, "T={PV\\over nR}"
or, "dT={PdV+VdP\\over nR}"
Putting in 2,we get,
"dU={C_v\\over R}(PdV+VdP)"
Putting this value of dU in 1 we get,
"{dP\\over P}=\u2212{dV\\over V}{C_v+R\\over C_v}"
or, "{dP\\over P}=\u2212{dV\\over V}\u22c5\u03b3" (as "\u03b3={Cp\\over Cv}={Cv+R\\over Cv}" )
or,"\u222b{dP\\over P}=\u2212\u03b3\u222b{dV\\over V}"
or, "lnP=\u2212\u03b3lnV+c"
or, "lnP+\u03b3lnV=k"
or, "lnP+lnV^\u03b3=k"
or,"ln(PV^\u03b3)=k"
so, "PV^\u03b3 = constant"
So it can also be written as
"P_1V_1^\u03b3=P_2V_2^\u03b3"
Comments
Leave a comment