At first, we know that for a particle in a box:
Ψ n ( x ) = 2 L s i n ( n π x L ) , n = 1 , 2 , 3 , . . . \Psi_{n}(x)=\sqrt{\frac{2}{L}}sin(\frac{n\pi x}{L}), n=1, 2, 3, ... Ψ n ( x ) = L 2 s in ( L nπ x ) , n = 1 , 2 , 3 , ...
For the problem, we have n=101 (because n=2 is the first excited state), and we will calculate the probability with the integral
P = ∫ 0 L / 100 [ Ψ n ( x ) ] 2 d x P = ∫ 0 L / 100 [ 2 L s i n ( n π x L ) ] 2 d x P = 2 L ∫ 0 L / 100 s i n 2 ( n π x L ) d x P=\int_0^{L/100}[\Psi_{n}(x)]^2dx \\ P=\int_0^{L/100}[\sqrt{\frac{2}{L}}sin(\frac{n\pi x}{L})]^2dx \\ P=\frac{2}{L}\int_0^{L/100}sin^2(\frac{n\pi x}{L})dx P = ∫ 0 L /100 [ Ψ n ( x ) ] 2 d x P = ∫ 0 L /100 [ L 2 s in ( L nπ x ) ] 2 d x P = L 2 ∫ 0 L /100 s i n 2 ( L nπ x ) d x
Then, to solve the integral we use the formula for the squared sine:
s i n 2 ( n π x L ) = 1 2 [ 1 − c o s ( 2 n π x L ) ] sin^2(\frac{n\pi x}{L})=\frac{1}{2}[1-cos(\frac{2n\pi x}{L})] s i n 2 ( L nπ x ) = 2 1 [ 1 − cos ( L 2 nπ x )]
We substitute and find the result of the integral:
P = 2 L ∫ 0 L / 100 s i n 2 ( n π x L ) d x P = 1 L ∫ 0 L / 100 [ 1 − c o s ( 2 n π x L ) ] d x P = 1 L [ x − L 2 n π s i n ( 2 n π x L ) ] ∣ 0 L / 100 P=\frac{2}{L}\int_0^{L/100}sin^2(\frac{n\pi x}{L})dx \\ P=\frac{1}{L}\int_0^{L/100}[1-cos(\frac{2n\pi x}{L})]dx
\\P= \frac{1}{L} [x-\frac{L}{2n\pi}sin(\frac{2n\pi x}{L})]\lvert_0^{L/100} P = L 2 ∫ 0 L /100 s i n 2 ( L nπ x ) d x P = L 1 ∫ 0 L /100 [ 1 − cos ( L 2 nπ x )] d x P = L 1 [ x − 2 nπ L s in ( L 2 nπ x )] ∣ 0 L /100
Then we substitute the limits to find the probability between x=0 and x=L/100
P = 1 L { [ L 100 − L 2 ( 101 ) π s i n ( 2 π ( 101 ) L 100 L ) ] − [ 0 − L 2 ( 101 ) π s i n ( 0 ) ] } P = 1 L { L 100 − L 202 π s i n ( 2.02 π ) } P= \frac{1}{L}\{ [\frac{L}{100}-\frac{L}{2(101)\pi}sin(\frac{2\pi(101) \frac{L}{100}}{L})]-[0-\frac{L}{2(101)\pi}sin(0)]\}
\\P= \frac{1}{L}\{\frac{L}{100}-\frac{L}{202\pi}sin(2.02\pi)\} P = L 1 {[ 100 L − 2 ( 101 ) π L s in ( L 2 π ( 101 ) 100 L )] − [ 0 − 2 ( 101 ) π L s in ( 0 )]} P = L 1 { 100 L − 202 π L s in ( 2.02 π )}
This last formula after simplification gives P = 1 100 − s i n ( 2.02 π ) 202 π \\ P= \frac{1}{100}-\frac{sin(2.02\pi)}{202\pi} P = 100 1 − 202 π s in ( 2.02 π ) , which is equal to
P = 1 100 − s i n ( 2.02 π ) 202 π ≊ 0.01 − 0.06279 202 π ≊ 0.01 − 0.000098945 P= \frac{1}{100}-\frac{sin(2.02\pi)}{202\pi}\approxeq0.01-\frac{0.06279}{202\pi}\approxeq0.01-0.000098945 P = 100 1 − 202 π s in ( 2.02 π ) ≊ 0.01 − 202 π 0.06279 ≊ 0.01 − 0.000098945
P ≊ 0.009901 ; % P ≊ 0.9901 % \\ P\approxeq 0.009901; \% P\approxeq 0.9901 \% P ≊ 0.009901 ; % P ≊ 0.9901%
In conclusion, the probability to find the particle between x= 0 to x=L/100, in an infinite potential
well given that the particle is in the 100th excited state is P=0.009901 or 0.9901%.
Reference:
Young, H. D., & Freedman, R. A. (2015). University Physics with Modern Physics and Mastering Physics (p. 1632). Academic Imports Sweden AB.
Comments