1. At absolute zero temperature, all states within the Fermi sphere are occupied by electrons with spin state of half. Take density cm-3. Calculate
i. Fermi wave vector.
(3)
ii. Fermi energy.
(3)
iii. Fermi momentum.
Solution.
"n\\approx10^{22}cm^{-3}=10^{28}m^{-3};"
"n=\\dfrac{k_F^3}{3\\pi^2}\\implies k_F=(3\\pi^2n)^{1\/3};"
"k_F=(3\\sdot3.14^2\\sdot10^{28})^{1\/3}=6.53\\sdot10^9m^{-1};"
"E_F=\\dfrac{h^2k_F^2}{2m};"
"E_F=\\dfrac{(6.626\\sdot10^{-34})^2\\sdot(6.53\\sdot10^9)^2}{2\\sdot9.1\\sdot10^{-31}}=15.75\\sdot10^{-19}J;"
"p_F=hk_F;"
"p_F=6.626\\sdot10^{-34}\\sdot6.53\\sdot10^9=43.27\\sdot 10^{-25}kgm\/s;"
Answer: I."k_F=(3\\sdot3.14^2\\sdot10^{28})^{1\/3}=6.53\\sdot10^9m^{-1};"
II."E_F=15.75\\sdot10^{-19}J;"
III."p_F==43.27\\sdot 10^{-25}kgm\/s."
Comments
Leave a comment