. Spherically symmetric charge distribution. Fig. 3-15 shows a spherical distribution of charge of radius R. The charge density at any points depends only on the distance of the point from the center and not on the direction, a condition called spherical symmetry. Find an expression for E for points (a) outside and (b) inside the charge distribution. Note that the object in Fig. 3-15 cannot be a conductor.
Solution.
ρ0\rho _0ρ0 ;
R;R;R;
r;r;r;
a)Eout=14πϵ0qtotR2;a) E_{out}=\dfrac{1}{4\pi\epsilon_0}\dfrac{q_{tot}}{R^2};a)Eout=4πϵ01R2qtot;
q=∫ρ0dV=ρ0(43πR3);q=\int\rho_0dV=\rho_0(\dfrac{4}{3}\pi R^3);q=∫ρ0dV=ρ0(34πR3);
Eout=14πϵ0ρ0(43πR3)R2=ρ0R3ϵ0;E_{out}=\dfrac{1}{4\pi \epsilon_0}\dfrac{\rho_0(\dfrac{4}{3}\pi R^3)}{R^2}=\dfrac{\rho_0 R}{3\epsilon_0};Eout=4πϵ01R2ρ0(34πR3)=3ϵ0ρ0R;
b)b)b) Ein=14πϵ0qwithinr2;E_{in}=\dfrac{1}{4\pi\epsilon_0}\dfrac{q_{within}}{r^2};Ein=4πϵ01r2qwithin;
q=∫ρ0dV=ρ0(43πr3);q=\int\rho_0dV=\rho_0(\dfrac{4}{3}\pi r^3);q=∫ρ0dV=ρ0(34πr3);
Ein=14πϵ0ρ0(43πr3)r2=ρ0r3ϵ0;E_{in}=\dfrac{1}{4\pi \epsilon_0}\dfrac{\rho_0(\dfrac{4}{3}\pi r^3)}{r^2}=\dfrac{\rho_0 r}{3\epsilon_0};Ein=4πϵ01r2ρ0(34πr3)=3ϵ0ρ0r;
Answer: a)Eout=ρ0R3ϵ0;a)E_{out}=\dfrac{\rho_0 R}{3\epsilon_0};a)Eout=3ϵ0ρ0R;
b)Ein=ρ0r3ϵ0.b)E_{in}=\dfrac{\rho_0 r}{3\epsilon_0}.b)Ein=3ϵ0ρ0r.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments