Question #200684

. Spherically symmetric charge distribution. Fig. 3-15 shows a spherical distribution of charge of radius R. The charge density  at any points depends only on the distance of the point from the center and not on the direction, a condition called spherical symmetry. Find an expression for E for points (a) outside and (b) inside the charge distribution. Note that the object in Fig. 3-15 cannot be a conductor. 


1
Expert's answer
2021-05-31T15:38:08-0400

Solution.

ρ0\rho _0 ;

R;R;

r;r;

a)Eout=14πϵ0qtotR2;a) E_{out}=\dfrac{1}{4\pi\epsilon_0}\dfrac{q_{tot}}{R^2};

q=ρ0dV=ρ0(43πR3);q=\int\rho_0dV=\rho_0(\dfrac{4}{3}\pi R^3);

Eout=14πϵ0ρ0(43πR3)R2=ρ0R3ϵ0;E_{out}=\dfrac{1}{4\pi \epsilon_0}\dfrac{\rho_0(\dfrac{4}{3}\pi R^3)}{R^2}=\dfrac{\rho_0 R}{3\epsilon_0};

b)b) Ein=14πϵ0qwithinr2;E_{in}=\dfrac{1}{4\pi\epsilon_0}\dfrac{q_{within}}{r^2};

q=ρ0dV=ρ0(43πr3);q=\int\rho_0dV=\rho_0(\dfrac{4}{3}\pi r^3);

Ein=14πϵ0ρ0(43πr3)r2=ρ0r3ϵ0;E_{in}=\dfrac{1}{4\pi \epsilon_0}\dfrac{\rho_0(\dfrac{4}{3}\pi r^3)}{r^2}=\dfrac{\rho_0 r}{3\epsilon_0};

Answer: a)Eout=ρ0R3ϵ0;a)E_{out}=\dfrac{\rho_0 R}{3\epsilon_0};

b)Ein=ρ0r3ϵ0.b)E_{in}=\dfrac{\rho_0 r}{3\epsilon_0}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS