Answer to Question #179244 in Molecular Physics | Thermodynamics for sunny

Question #179244

Calculate the probability that the speed of a chlorine molecule will lie between 200 m s−1 and 220 m s1 at 300 K. Given that mass of chlorine molecule = 70u, kB = 1.38 × 1023 JK1 and NA = 6.02 × 1026 kmol1


1
Expert's answer
2021-04-09T11:24:41-0400

To be given in question

"v_{1}=200meter\/sec"

"v_{2}=220meter\/sec"

"M_{cl}=70 amu" "K_{B}=1.38\\times10^{-23}Jule\/mol" "T=300K"

To be asked in question


Probability speed

We know that

"P=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}e^{-\\frac{mv^2}{2K_{B}T}}"


"P_{1}=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}e^{-\\frac{mv_{1}^2}{2K_{B}T}}"

Put value

"P_{m}=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}"

"P_{m}= [\\frac{70 \\times 1.67\\times10^{-27}}{2\\times3.14\\times1.38\\times10^{-23}\\times 300}]^\\frac{1}{2}"

"P_{m}=2.12\\times10^{-3}"

"\\frac{mv_{1}^2}{2K_{B}T}=x"

"\\frac{mv_{1}^2}{2K_{B}T}=" "[\\frac{70 \\times 1.67\\times10^{-27}\\times200^2}{2\\times1.38\\times10^{-23}\\times 300}]^\\frac{1}{2}"


"x=0.564"

"\\frac{mv_{2}^2}{2K_{B}T}=y"

"\\frac{mv_{2}^2}{2K_{B}T}=" "y= [\\frac{70 \\times 1.67\\times10^{-27}\\times220^2}{2\\times1.38\\times10^{-23}\\times300}]"

"y=0.6824"

First velocity

"P_{1} =P_{m}e^{-x}"

Put value

"P_{1}=1.206\\times10^{-03}"

Second velocity

"P_{2} =P_{m}e^{-y}"

Put value

"P_{2}=" "1.071\\times10^{-03}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS