Calculate the probability that the speed of a chlorine molecule will lie between 200 m s−1 and 220 m s1 at 300 K. Given that mass of chlorine molecule = 70u, kB = 1.38 × 1023 JK1 and NA = 6.02 × 1026 kmol1
To be given in question
"v_{1}=200meter\/sec"
"v_{2}=220meter\/sec"
"M_{cl}=70 amu" "K_{B}=1.38\\times10^{-23}Jule\/mol" "T=300K"
To be asked in question
Probability speed
We know that
"P=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}e^{-\\frac{mv^2}{2K_{B}T}}"
"P_{1}=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}e^{-\\frac{mv_{1}^2}{2K_{B}T}}"
Put value
"P_{m}=[\\frac{m}{2\\pi K_{B}T}]^\\frac{1}{2}"
"P_{m}= [\\frac{70 \\times 1.67\\times10^{-27}}{2\\times3.14\\times1.38\\times10^{-23}\\times 300}]^\\frac{1}{2}"
"P_{m}=2.12\\times10^{-3}"
"\\frac{mv_{1}^2}{2K_{B}T}=x"
"\\frac{mv_{1}^2}{2K_{B}T}=" "[\\frac{70 \\times 1.67\\times10^{-27}\\times200^2}{2\\times1.38\\times10^{-23}\\times 300}]^\\frac{1}{2}"
"x=0.564"
"\\frac{mv_{2}^2}{2K_{B}T}=y"
"\\frac{mv_{2}^2}{2K_{B}T}=" "y= [\\frac{70 \\times 1.67\\times10^{-27}\\times220^2}{2\\times1.38\\times10^{-23}\\times300}]"
"y=0.6824"
First velocity
"P_{1} =P_{m}e^{-x}"
Put value
"P_{1}=1.206\\times10^{-03}"
Second velocity
"P_{2} =P_{m}e^{-y}"
Put value
"P_{2}=" "1.071\\times10^{-03}"
Comments
Leave a comment