Question #179244

Calculate the probability that the speed of a chlorine molecule will lie between 200 m s−1 and 220 m s1 at 300 K. Given that mass of chlorine molecule = 70u, kB = 1.38 × 1023 JK1 and NA = 6.02 × 1026 kmol1


1
Expert's answer
2021-04-09T11:24:41-0400

To be given in question

v1=200meter/secv_{1}=200meter/sec

v2=220meter/secv_{2}=220meter/sec

Mcl=70amuM_{cl}=70 amu KB=1.38×1023Jule/molK_{B}=1.38\times10^{-23}Jule/mol T=300KT=300K

To be asked in question


Probability speed

We know that

P=[m2πKBT]12emv22KBTP=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}e^{-\frac{mv^2}{2K_{B}T}}


P1=[m2πKBT]12emv122KBTP_{1}=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}e^{-\frac{mv_{1}^2}{2K_{B}T}}

Put value

Pm=[m2πKBT]12P_{m}=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}

Pm=[70×1.67×10272×3.14×1.38×1023×300]12P_{m}= [\frac{70 \times 1.67\times10^{-27}}{2\times3.14\times1.38\times10^{-23}\times 300}]^\frac{1}{2}

Pm=2.12×103P_{m}=2.12\times10^{-3}

mv122KBT=x\frac{mv_{1}^2}{2K_{B}T}=x

mv122KBT=\frac{mv_{1}^2}{2K_{B}T}= [70×1.67×1027×20022×1.38×1023×300]12[\frac{70 \times 1.67\times10^{-27}\times200^2}{2\times1.38\times10^{-23}\times 300}]^\frac{1}{2}


x=0.564x=0.564

mv222KBT=y\frac{mv_{2}^2}{2K_{B}T}=y

mv222KBT=\frac{mv_{2}^2}{2K_{B}T}= y=[70×1.67×1027×22022×1.38×1023×300]y= [\frac{70 \times 1.67\times10^{-27}\times220^2}{2\times1.38\times10^{-23}\times300}]

y=0.6824y=0.6824

First velocity

P1=PmexP_{1} =P_{m}e^{-x}

Put value

P1=1.206×1003P_{1}=1.206\times10^{-03}

Second velocity

P2=PmeyP_{2} =P_{m}e^{-y}

Put value

P2=P_{2}= 1.071×10031.071\times10^{-03}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS