Question #179158

Calculate the temperature at which the root mean square velocity of a chlorine molecule will be equal to its escape velocity from the earth’s gravitational field. 

Given that the radius of earth is 6400 km.


1
Expert's answer
2021-04-13T06:42:21-0400

Solution.

M(Cl)=35.5103kgmol1;M(Cl)=35.5\sdot10^{-3}kgmol^{-1};

Re=6.4106m;R_e=6.4\sdot 10^{6}m;

k=1.381023JK1;k=1.38\sdot10^{-23}JK^{-1};

NA=6.021023mol1;N_A=6.02\sdot 10^{23}mol^{-1};

v?;v-?;

Wk=mv22;Wk=3kT2;    W_k=\dfrac{mv^2}{2}; W_k=\dfrac{3kT}{2}; \implies v=3kTm;v=\sqrt{\dfrac{3kT}{m}};

m=MNA;v=3kNATM;m=\dfrac{M}{N_A}; v=\sqrt{\dfrac{3kN_AT}{M}};

vescape=2gRe;v_{escape}=\sqrt{2gR_e};

3kNATM=2gRe    T=2gReM3kNA;\sqrt{\dfrac{3kN_AT}{M}}=\sqrt{2gR_e} \implies T=\dfrac{2gR_eM}{3kN_{A}};

T=210mc26.4106m35.5103kgmol131.381023JK16.021023mol1=1.8105K;T=\dfrac{2\sdot 10mc^{-2}\sdot 6.4\sdot 10^6m\sdot 35.5\sdot 10^{-3}kgmol^{-1}}{3\sdot1.38\sdot10^{-23}JK^{-1}\sdot6.02\sdot 10^{23}mol^{-1}}=1.8\sdot10^5K;


Answer: T=1.8105K.T=1.8\sdot10^5K.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS