Calculate the temperature at which the root mean square velocity of a chlorine molecule will be equal to its escape velocity from the earth’s gravitational field.
Given that the radius of earth is 6400 km.
Solution.
"M(Cl)=35.5\\sdot10^{-3}kgmol^{-1};"
"R_e=6.4\\sdot 10^{6}m;"
"k=1.38\\sdot10^{-23}JK^{-1};"
"N_A=6.02\\sdot 10^{23}mol^{-1};"
"v-?;"
"W_k=\\dfrac{mv^2}{2}; W_k=\\dfrac{3kT}{2}; \\implies" "v=\\sqrt{\\dfrac{3kT}{m}};"
"m=\\dfrac{M}{N_A}; v=\\sqrt{\\dfrac{3kN_AT}{M}};"
"v_{escape}=\\sqrt{2gR_e};"
"\\sqrt{\\dfrac{3kN_AT}{M}}=\\sqrt{2gR_e} \\implies T=\\dfrac{2gR_eM}{3kN_{A}};"
"T=\\dfrac{2\\sdot 10mc^{-2}\\sdot 6.4\\sdot 10^6m\\sdot 35.5\\sdot 10^{-3}kgmol^{-1}}{3\\sdot1.38\\sdot10^{-23}JK^{-1}\\sdot6.02\\sdot 10^{23}mol^{-1}}=1.8\\sdot10^5K;"
Answer: "T=1.8\\sdot10^5K."
Comments
Leave a comment