p V γ = const ⇒ p 1 V 1 γ = p 2 V 2 γ pV^{\gamma} = \text{const} \; \Rightarrow p_1V_1^{\gamma} = p_2V_2^{\gamma} p V γ = const ⇒ p 1 V 1 γ = p 2 V 2 γ
For the ideal gas p V = ν R T . pV = \nu R T. p V = ν RT .
The work done by the gas is
w = ∫ V 1 V 2 p d V = ∫ V 1 V 2 const V γ d V = − const ⋅ 1 γ − 1 ⋅ 1 V γ − 1 ∣ V 1 V 2 = const ⋅ 1 1 − γ ⋅ ( 1 V 2 γ − 1 − 1 V 1 γ − 1 ) = ∣ const = p 1 V 1 γ = p 2 V 2 γ ∣ = 1 1 − γ ⋅ ( p 2 V 2 γ V 2 γ − 1 − p 1 V 1 γ V 1 γ − 1 ) = 1 1 − γ ⋅ ( p 2 V 2 − p 1 V 1 ) w = \int\limits_{V_1}^{V_2}p\,dV = \int\limits_{V_1}^{V_2}\dfrac{\text{const}}{V^{\gamma}}\,dV =- \text{const}\cdot\dfrac{1}{\gamma-1}\cdot \dfrac{1}{V^{\gamma-1}}\Big |_{V_1}^{V_2} = \text{const}\cdot\dfrac{1}{1-\gamma}\cdot \left(\dfrac{1}{V_2^{\gamma-1}} - \dfrac{1}{V_1^{\gamma-1}} \right) = \Big| \text{const} = p_1V_1^{\gamma} = p_2V_2^{\gamma} \Big| = \dfrac{1}{1-\gamma}\cdot \left(\dfrac{p_2V_2^{\gamma}}{V_2^{\gamma-1}} - \dfrac{p_1V_1^{\gamma}}{V_1^{\gamma-1}} \right) = \dfrac{1}{1-\gamma}\cdot \left(p_2V_2 - p_1V_1 \right) w = V 1 ∫ V 2 p d V = V 1 ∫ V 2 V γ const d V = − const ⋅ γ − 1 1 ⋅ V γ − 1 1 ∣ ∣ V 1 V 2 = const ⋅ 1 − γ 1 ⋅ ( V 2 γ − 1 1 − V 1 γ − 1 1 ) = ∣ ∣ const = p 1 V 1 γ = p 2 V 2 γ ∣ ∣ = 1 − γ 1 ⋅ ( V 2 γ − 1 p 2 V 2 γ − V 1 γ − 1 p 1 V 1 γ ) = 1 − γ 1 ⋅ ( p 2 V 2 − p 1 V 1 )
Comments