Answer
According to thermodynamics
We can express entropy in terms of any two of PVT. Let us first express entropy as a function of V and T
dS=(∂V∂S)TdV+(∂T∂S)VdT.
As
TdS=T(∂V∂S)TdV+T(∂T∂S)VdT.
Now using maxwell equation
(∂V∂S)T=(∂T∂P)V Using Tds=dU
T(∂T∂S)V=(∂T∂U)V=CV
This is the first of the TdS equations.
Now let us express entropy as a function of P and T
dS=(∂P∂S)TdP+(∂T∂S)PdT.
TdS=T(∂P∂S)TdP+T(∂T∂S)PdT.
Using maxwell equation
(∂P∂S)T=−(∂T∂V)P
We know Tds=dU
T(∂T∂S)P=(∂T∂H)P=CP
So
TdS=−T(∂T∂V)PdP+CPdT.
This is the first of the TdS equations.
Comments