Question #169525

Using Maxwell’s relations, deduce first and second TdS equations


1
Expert's answer
2021-03-14T19:48:11-0400

Answer

According to thermodynamics

We can express entropy in terms of any two of PVT. Let us first express entropy as a function of V and T

dS=(SV)TdV+(ST)VdT.d S=\left(\frac{\partial S}{\partial V}\right)_{T} d V+\left(\frac{\partial S}{\partial T}\right)_{V} d T.

As

TdS=T(SV)TdV+T(ST)VdT.T d S=T\left(\frac{\partial S}{\partial V}\right)_{T} d V+T\left(\frac{\partial S}{\partial T}\right)_{V} d T.

Now using maxwell equation


(SV)T=(PT)V\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} Using Tds=dU


T(ST)V=(UT)V=CVT\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}

This is the first of the TdS equations.


Now let us express entropy as a function of P and T

dS=(SP)TdP+(ST)PdT.d S=\left(\frac{\partial S}{\partial P}\right)_{T} d P+\left(\frac{\partial S}{\partial T}\right)_{P} d T.

TdS=T(SP)TdP+T(ST)PdT.T d S=T\left(\frac{\partial S}{\partial P}\right)_{T} d P+T\left(\frac{\partial S}{\partial T}\right)_{P} d T.

Using maxwell equation

(SP)T=(VT)P\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}

We know Tds=dU


T(ST)P=(HT)P=CPT\left(\frac{\partial S}{\partial T}\right)_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}=C_{P}

So

TdS=T(VT)PdP+CPdT.T d S=-T\left(\frac{\partial V}{\partial T}\right)_{P} d P+C_{P} d T.

This is the first of the TdS equations.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS