The expression for the number of molecules in a Maxwellian gas having speeds in
the range v to v + dv is
dNV=4(3.14)N((M/(2(3.14)kBT))3/2 V2 exp[-(mv2/2kBT)]dV)
Using this relation, obtain an expression for average speed. Also, plot Maxwellian
distribution function versus speed at three different temperatures.
"dN_v=4\\pi N(\\frac{m}{2\\pi k_bT})^{\\frac 32} v^2 e^{-\\frac{mv^2}{2k_b T}}dv,"
"F(v)=4\\pi (\\frac{m}{2\\pi k_bT})^{\\frac 32} v^2 e^{-\\frac{mv^2}{2k_b T}}dv,"
"<v>=\\int_0^{\\infin}vF(v)dv=4\\pi (\\frac{m}{2\\pi k_bT})^{\\frac 32} \\int_0^{\\infin}v^3 e^{-\\frac{mv^2}{2k_b T}}dv=\\sqrt{\\frac{8k_b T}{\\pi m}}"
Comments
Leave a comment