The mean speed of the molecules of an ideal gas is − 3 1 2.0 10 ms .The radius
of a gas molecule is − 10 1.5 10 m.Calculate the (i) collision frequency, and
(ii) mean free path. It is given that n = 4 1024 m^−3.
<v>=312(m/s)<v>=312(m/s)<v>=312(m/s)
n=4⋅1024(1/m3)n=4\cdot10^{24}(1/m^3)n=4⋅1024(1/m3)
r=1.5⋅10−10(m)r=1.5\cdot10^{-10}(m)r=1.5⋅10−10(m)
(i) <z>=42πnr2⋅<v>=<z>=4\sqrt2\pi n r^2\cdot<v>=<z>=42πnr2⋅<v>=
=4⋅2⋅3.14⋅4⋅1024⋅(1.5⋅10−10)2⋅312==4\cdot\sqrt2\cdot3.14\cdot4\cdot10^{24}\cdot(1.5\cdot10^{-10})^2\cdot312==4⋅2⋅3.14⋅4⋅1024⋅(1.5⋅10−10)2⋅312=
=500⋅106(collision/s)=500\cdot 10^6(collision/s)=500⋅106(collision/s)
(ii) <λ>=<v><z>=312500⋅106=624⋅10−9(m)<\lambda>=\frac{<v>}{<z>}=\frac{312}{500\cdot10^6}=624\cdot10^{-9}(m)<λ>=<z><v>=500⋅106312=624⋅10−9(m)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments