"m = 30kg\/m\\\\\nR = 6400 km\\\\\nh = 40,000km\\\\"
"\\begin{aligned}\ng_n &= g(1+\\frac{h}{R_e})^{-2}\\\\\n&= 9.8(1+\\frac{40000}{6400})^{-2}\\\\\n&= 0.186\n\\end{aligned}"
"\\begin{aligned}\nT &= \\dfrac{2\u03c0}{R_e}\\sqrt{\\dfrac{(R_e+h)^3)}{g}}\\\\\n&= \\dfrac{2\u03c0}{6400\u00d710^3}\\sqrt{\\dfrac{((40000+6400)\u00d710^3)^3)}{g}}\\\\\n&= 99 \u00d7 10^3 sec\n\\end{aligned}"
"\\begin{aligned} \nv &= \\dfrac{2\u03c0r}{T}\\\\ \\\\\n&= \\dfrac{2\u03c0(R_e + h)}{T}\\\\ \\\\\n&= \\dfrac{2\u03c0((40000+ 6400)\u00d710^3)}{99\u00d710^3}\\\\ \\\\\n&= 2.9\u00d710^3ms^{-1}\n\\end{aligned}"
"\\begin{aligned}\nt &= \\dfrac{s}{v_0}\\\\ \\\\\n&= \\frac{40000\u00d710^3}{2.9\u00d710^3} = 13,793 sec\n\\end{aligned}"
converting 13793 seconds to hour, we divide the number of seconds by 3600
"\\dfrac{13793}{3600} = 3.83 \\ hours ="
"3\\ hours \\ \\ 50\\ minutes"
Therefore, it will take the wave 3 hours 50 minutes to reach the surface.
Comments
Leave a comment