m = 30 k g / m R = 6400 k m h = 40 , 000 k m m = 30kg/m\\
R = 6400 km\\
h = 40,000km\\ m = 30 k g / m R = 6400 km h = 40 , 000 km
g n = g ( 1 + h R e ) − 2 = 9.8 ( 1 + 40000 6400 ) − 2 = 0.186 \begin{aligned}
g_n &= g(1+\frac{h}{R_e})^{-2}\\
&= 9.8(1+\frac{40000}{6400})^{-2}\\
&= 0.186
\end{aligned} g n = g ( 1 + R e h ) − 2 = 9.8 ( 1 + 6400 40000 ) − 2 = 0.186
T = 2 π R e ( R e + h ) 3 ) g = 2 π 6400 × 1 0 3 ( ( 40000 + 6400 ) × 1 0 3 ) 3 ) g = 99 × 1 0 3 s e c \begin{aligned}
T &= \dfrac{2π}{R_e}\sqrt{\dfrac{(R_e+h)^3)}{g}}\\
&= \dfrac{2π}{6400×10^3}\sqrt{\dfrac{((40000+6400)×10^3)^3)}{g}}\\
&= 99 × 10^3 sec
\end{aligned} T = R e 2 π g ( R e + h ) 3 ) = 6400 × 1 0 3 2 π g (( 40000 + 6400 ) × 1 0 3 ) 3 ) = 99 × 1 0 3 sec
v = 2 π r T = 2 π ( R e + h ) T = 2 π ( ( 40000 + 6400 ) × 1 0 3 ) 99 × 1 0 3 = 2.9 × 1 0 3 m s − 1 \begin{aligned}
v &= \dfrac{2πr}{T}\\ \\
&= \dfrac{2π(R_e + h)}{T}\\ \\
&= \dfrac{2π((40000+ 6400)×10^3)}{99×10^3}\\ \\
&= 2.9×10^3ms^{-1}
\end{aligned} v = T 2 π r = T 2 π ( R e + h ) = 99 × 1 0 3 2 π (( 40000 + 6400 ) × 1 0 3 ) = 2.9 × 1 0 3 m s − 1
t = s v 0 = 40000 × 1 0 3 2.9 × 1 0 3 = 13 , 793 s e c \begin{aligned}
t &= \dfrac{s}{v_0}\\ \\
&= \frac{40000×10^3}{2.9×10^3} = 13,793 sec
\end{aligned} t = v 0 s = 2.9 × 1 0 3 40000 × 1 0 3 = 13 , 793 sec
converting 13793 seconds to hour, we divide the number of seconds by 3600
13793 3600 = 3.83 h o u r s = \dfrac{13793}{3600} = 3.83 \ hours = 3600 13793 = 3.83 h o u rs =
3 h o u r s 50 m i n u t e s 3\ hours \ \ 50\ minutes 3 h o u rs 50 min u t es
Therefore, it will take the wave 3 hours 50 minutes to reach the surface.
Comments