B y B o l t z m a n ′ s L a w ∂ Q o u t ∂ t = ( A Π 2 ) σ ( T s u m 4 − T 4 ) G a i n r a t e ∂ Q i n ∂ t = ∂ ∂ t m c Δ T = m c ∂ T ∂ t E q u a t i n g b o t h ∂ Q o u t ∂ t = ∂ Q i n ∂ t ∂ T ∂ t = A π 2 m c σ T s u m 4 − A π 2 m c σ T 4 ∂ T ∂ t + A π 2 m c σ T 4 = A π 2 m c σ T s u m 4 T ( t ) = 1 3 A π 2 m c σ t + ( 1 T − T s u m ) 3 3 + T s u m I n s t e a d y − s t a t e t → ∞ T = T s u m = 4 5 ∘ C o n 318 K ( S t e a d y ) By\ Boltzman's\ Law \\
\\
\frac{\partial Q _{out} }{\partial t} =( \ A \Pi^{2} )\sigma (T^{4}_{sum_{}}-T^{4})\\
Gain\ rate\\
\frac{\partial Q _{in} }{\partial t} = \frac{\partial }{\partial t }mc\Delta T =mc\frac{\partial T}{\partial t}\\
Equating\ both \\
\frac{\partial Q _{out} }{\partial t} = \frac{\partial Q _{in} }{\partial t}\\
\frac{\partial T}{\partial t} =\frac{A\pi ^{2}}{mc}\sigma T_{sum}^{4}-\frac{A\pi ^{2}}{mc}\sigma T^{4}\\
\frac{\partial T}{\partial t} + \frac{A\pi ^{2}}{mc}\sigma T^{4} =\frac{A\pi ^{2}}{mc}\sigma T_{sum}^{4}\\
T (t) = \frac{1}{\sqrt[3]{\frac{3A\pi ^{2}} {mc}\sigma t +(\frac{1}{T-T_{sum}})3}} +T_{sum}\\
In\ steady -state\\
t \to \infty\\
T=T_{sum}=45^{\circ}C\\
on \ 318K\ (Steady) B y B o lt z ma n ′ s L a w ∂ t ∂ Q o u t = ( A Π 2 ) σ ( T s u m 4 − T 4 ) G ain r a t e ∂ t ∂ Q in = ∂ t ∂ m c Δ T = m c ∂ t ∂ T Eq u a t in g b o t h ∂ t ∂ Q o u t = ∂ t ∂ Q in ∂ t ∂ T = m c A π 2 σ T s u m 4 − m c A π 2 σ T 4 ∂ t ∂ T + m c A π 2 σ T 4 = m c A π 2 σ T s u m 4 T ( t ) = 3 m c 3 A π 2 σ t + ( T − T s u m 1 ) 3 1 + T s u m I n s t e a d y − s t a t e t → ∞ T = T s u m = 4 5 ∘ C o n 318 K ( St e a d y )
Comments