Question #145945
For the Otto cycle of air shown, P1= 1 bar, T1 = 290 K, V1 = 400
cm3. If T3 = 2200 K and compression ratio is 8, find (a) the heat addition, in kJ, (b) the net work, in kJ, (c) the thermal efficiency.
The mass of the air is 0.48 g.
1
Expert's answer
2020-11-23T10:32:32-0500

(a)

Q1=νCV(T3T2)Q_1=\nu C_V(T_3-T_2)

γ=1.4\gamma=1.4

n=V1V2=8n=\frac{V_1}{V_2}=8

CV=Rγ1C_V=\frac{R}{\gamma-1}

ν=mM\nu=\frac mM

p2=p1(V1V2)γ=p1nγp_2=p_1(\frac{V_1}{V_2})^\gamma =p_1n^\gamma

T2=T1p2V2p1V1=T1nγn=T1nγ1=29080.4=666KT_2=T_1\cdot \frac{p_2V_2}{p_1V_1}=T_1 \cdot \frac{n^\gamma}{n}=T_1n^{\gamma-1}=290\cdot8^{0.4}=666 K

Q1=0.48298.310.4(2200666)=0.527kJQ_1=\frac{0.48}{29}\cdot \frac{8.31}{0.4}\cdot(2200-666)=0.527 kJ

(b)

Q2=νCV(T4T1)Q_2=\nu C_V(T_4-T_1)

p3=p2T3T2=p1nγT3T2p_3=p_2\frac{T_3}{T_2}=p_1n^\gamma\frac{T_3}{T_2}

p4=p3(V2V1)γ=p1nγT3T2nγ=p1T3T2p_4=p_3(\frac{V_2}{V_1})^\gamma=p_1n^\gamma\frac{T_3}{T_2}n^{-\gamma}=p_1\frac{T_3}{T_2}

T4=T3p4V4p3V3=T3p1T3T2p1nγT3T2n=T3n1γ=220080.4=958KT_4=T_3\frac{p_4V_4}{p_3V_3}=T_3\frac{p_1\frac{T_3}{T_2}}{p_1n^\gamma\frac{T_3}{T_2}}n=T_3n^{1-\gamma}=2200\cdot 8^{-0.4}=958 K

Q2=0.48298.310.4(958290)=0.230kJQ_2=\frac{0.48}{29}\cdot \frac{8.31}{0.4}\cdot(958-290)=0.230 kJ

(c)

η=11nγ1=1180.4=56\eta=1-\frac{1}{n^{\gamma-1}}=1-\frac{1}{8^{0.4}}=56 (%)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS