"W_{1\\to2} = ?;\\ W_{2\\to3} = ?;\\ W_{3\\to1} = ?"
"\\begin{aligned}\nW_{1\\to2} &= \\frac{1}{2}(P_1+P_2)(V_2-V_1)\\\\\n&= \\frac{1}{2}((5.2+2.4)\u00d710^5)(0.03-0.005)\\\\\n&= 9500J\n\\end{aligned}"
"\\begin{aligned}\nW_{2\\to3} &= P_2(V_3-V_2)\\\\\n\\textsf{Accord}&\\textsf{ing to Boyles Law}\\\\\nV_3 &= \\frac{P_1}{P_3}V_1 = \\frac{5.2}{2.4}\u00d70.005 = 0.0108m^3\\\\\nW_{2\\to3} &= 2.4\u00d710^5(0.0108-0.03)\\\\\n&= -4608J\n\\end{aligned}"
"\\begin{aligned}\nW_{3\\to1} &= P_1V_1\\ln\\frac{V_1}{V_3}\\\\\n&= 5.2\u00d710^5 \u00d7 0.005 \u00d7 \\ln0.463\\\\\n&= -2002J\n\n\\end{aligned}"
"\\therefore" The net work of the cycle is;
9500 - 4608 - 2002 = 2890J
Comments
Leave a comment