"\\begin{aligned}\nT&= 800K\\\\\nV_{escape} &= 5500\\ mph = 2.45\u00d710^3m\/s\\\\\nm_{H_2} &= 3.33\u00d7 10^{-27} kg\\\\\nV_{rms} &= ?\\\\\n\\end{aligned}"
"\\begin{aligned}\nfrom,\\ v_{rms} &= \\sqrt{\\dfrac{3kT}{m_{H_2}}}\\\\\n\\\\\nv_{rms} &= \\sqrt{\\dfrac{3\u00d71.38\u00d710^{-23}\u00d7800}{3.33\u00d710^{-27}}}\\\\\n\\\\\nv_{rms} &= \\sqrt{10,036,363.6}\\\\\nv_{rms} &= 3.168\u00d710^3m\/s\n\\end{aligned}"
"V_{rms} > V_{escape}", "\\ \\therefore" "H_2" should escape if it hits the part of the moon at 800K.
Comments
Leave a comment