r1 = 0.025 m
T = 40 + 273 = 313 K
L1 = 0.05 m
Tenv = 60 + 273 = 333 K
P1 = 1.0 Watt
r2 = 0.005 m
P1 = σεA1(Tenv4 – T4)
P2 = σεA2(Tenv4 – T4)
σ=5.6704×10−8m2K4W Stefan Boltzmann constant
A1=πr12+πr12+(2πr1)L1
A1=3.14×0.0252+3.14×0.0252+(2×3.14×0.025)×0.05=0.011780972m2
ε=σA1(Tenv4–T4)P1
ε=(5.6704×10−8)(0.011780972)(3334–3134)1=0.555
The stretched cylinder and the former have the same volume:
V1 =V2
πr12L1 = πr22L2
L2=πr22πr12L1
L2=0.00520.0252×0.05=1.25m
A2=πr22+πr22+(2πr2)L2
A2=3.14×(0.005)2+3.14×(0.005)2+(2×3.14×0.005)×1.25=0.039407m2
P2 = σεA2(Tenv4 – T4)
P2=(5.6704×10−8)(0.555)(0.039407)(3334–3134)=3.346W
Comments