r1 = 0.025 m
T = 40 + 273 = 313 K
L1 = 0.05 m
Tenv = 60 + 273 = 333 K
P1 = 1.0 Watt
r2 = 0.005 m
P1 = σεA1(Tenv4 – T4)
P2 = σεA2(Tenv4 – T4)
"\u03c3 = 5.6704 \\times 10^{-8} \\; \\frac{W}{m^2K^4}" Stefan Boltzmann constant
"A_1 = \u03c0r_1^2 + \u03c0r_1^2 +(2 \u03c0r_1)L_1"
"A_1 = 3.14 \\times 0.025^2 + 3.14 \\times 0.025^2 +(2 \\times 3.14 \\times 0.025) \\times 0.05 = 0.011780972 \\;m^2"
"\u03b5 = \\frac{P_1}{\u03c3A_1(T_{env}^4 \u2013 T^4)}"
"\u03b5 = \\frac{1}{(5.6704 \\times 10^{-8})(0.011780972)(333^4 \u2013 313^4)} = 0.555"
The stretched cylinder and the former have the same volume:
V1 =V2
πr12L1 = πr22L2
"L_2 = \\frac{\u03c0r_1^2L_1}{\u03c0r_2^2}"
"L_2 = \\frac{0.025^2 \\times 0.05}{0.005^2} = 1.25 \\;m"
"A_2 = \u03c0r_2^2 + \u03c0r_2^2 +(2 \u03c0r_2)L_2"
"A_2 = 3.14 \\times (0.005)^2 + 3.14 \\times (0.005)^2 + (2\\times 3.14 \\times 0.005) \\times 1.25 = 0.039407 \\;m^2"
P2 = σεA2(Tenv4 – T4)
"P_2 = (5.6704 \\times 10^{-8})(0.555)(0.039407)(333^4 \u2013 313^4) = 3.346\\; W"
Comments
Leave a comment