Question #137406
Two bodies were thrown simultaneously from the same point: one, straight up, and the other, at an angle of θ = 60° to the horizontal. The initial velocity of each body is equal to v0 = 25 m/s. Neglecting the air drag, find the distance between the bodies t = 1.70 s later.
1
Expert's answer
2020-10-15T03:13:11-0400

v0=25m/sv_0 = 25m/s

t=1.70st = 1.70s

Let the body thrown straight up be 1, and the other one be 2

Note that;

ay=g=10m/s2a_y = -g = -\,10m/s^2

ax=0m/s2ax = 0\,m/s^2


For body 1

θ\theta1 = 90°90\text{\textdegree} (i.e vertical)

Uy1=v0sinθ;Ux1=v0cosθUy1=25sin90;Ux1=25cos90Uy1=25m/s;Ux1=0m/s\begin{aligned} U_{y1} = v_0sinθ \quad &; \quad U_{x1} = v_0cosθ\\ U_{y1} = 25sin90 \enspace &; \quad U_{x1} = 25cos90\\ U_{y1} = 25m/s \quad & ;\quad U_{x1} = 0m/s \end{aligned}


x1=Ux1t+0.5axt2x1=0(1.70)+0.5(0)(1.70)2x1=0+0x1=0m\begin{alignedat}{2} &x_1 = U_{x1}t\, &+& \,0.5a_xt^2\\ &x_1 = 0(1.70)\, &+&\, 0.5(0)(1.70)^2\\ &x_1 = 0 + 0\\ ∴& x_1 = 0m \end{alignedat}


y1=Uy1t+0.5ayt2y1=(25)(1.70)+0.5(10)(1.70)2y1=42.514.45y1=28.05m\begin{alignedat}{2} &y_1 = U_{y1}t \,&+& \,0.5a_yt^2\\ &y_1 = (25)(1.70) \,&+&\, 0.5(-10)(1.70)^2\\ &y_1 = 42.5\, &-&\, 14.45\\ ∴& y_1 = 28.05m \end{alignedat}



For body 2

θ\theta2 = 60°60\text{\textdegree}

Uy2=v0sinθ;Ux2=v0cosθUy2=25sin60;Ux2=25cos60Uy2=21.65m/s;Ux2=12.5m/s\begin{aligned} U_{y2} = v_0sinθ \quad \,\,\, &; \quad U_{x2} = v_0cosθ\\ U_{y2}= 25sin60 \quad & ; \quad U_{x2} = 25cos60\\ U_{y2}= 21.65m/s\,\, & ; \quad U_{x2} = 12.5m/s \end{aligned}


x2=Ux2t+0.5axt2x2=12.5(1.70)+0.5(0)(1.70)2x2=21.25+0x2=21.25m\begin{alignedat}{2} &x_2 = U_{x2}t \, &+&\, 0.5a_xt^2\\ &x_2 = 12.5(1.70) \,&+& \,0.5(0)(1.70)^2\\ &x_2 = 21.25 &+&\, 0\\ ∴ &x_2 = 21.25m \end{alignedat}


y2=Uy2t+0.5ayt2y2=(21.65)(1.70)+0.5(10)(1.70)2y2=36.8114.45y2=22.36m\begin{alignedat}{2} &y_2 = U_{y2}t \,&+&\, 0.5a_yt^2\\ &y_2 = (21.65)(1.70)\, &+&\, 0.5(-10)(1.70)^2\\ &y_2 = 36.81 &-& \,14.45\\ ∴&y_2= 22.36m \end{alignedat}


from, distance between 2 points = (x2x1)2+(y2y1)2\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}


distance between the 2 bodies = (21.250)2+(22.3628.05)2\sqrt{(21.25-0)^2+(22.36-28.05)^2}


= (21.25)2+(5.69)2\sqrt{(21.25)^2+(-5.69)^2}


= 451.56+32.38\sqrt{451.56+32.38}


= 483.94\sqrt{483.94}


= 22m22m


\therefore the distance between the two bodies is 22m



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS