v 0 = 25 m / s v_0 = 25m/s v 0 = 25 m / s
t = 1.70 s t = 1.70s t = 1.70 s
Let the body thrown straight up be 1 , and the other one be 2
Note that;
a y = − g = − 10 m / s 2 a_y = -g = -\,10m/s^2 a y = − g = − 10 m / s 2
a x = 0 m / s 2 ax = 0\,m/s^2 a x = 0 m / s 2
For body 1
θ \theta θ 1 = 90 ° 90\text{\textdegree} 90 ° (i.e vertical)
U y 1 = v 0 s i n θ ; U x 1 = v 0 c o s θ U y 1 = 25 s i n 90 ; U x 1 = 25 c o s 90 U y 1 = 25 m / s ; U x 1 = 0 m / s \begin{aligned}
U_{y1} = v_0sinθ \quad &; \quad U_{x1} = v_0cosθ\\
U_{y1} = 25sin90 \enspace &; \quad U_{x1} = 25cos90\\
U_{y1} = 25m/s \quad & ;\quad U_{x1} = 0m/s
\end{aligned} U y 1 = v 0 s in θ U y 1 = 25 s in 90 U y 1 = 25 m / s ; U x 1 = v 0 cos θ ; U x 1 = 25 cos 90 ; U x 1 = 0 m / s
x 1 = U x 1 t + 0.5 a x t 2 x 1 = 0 ( 1.70 ) + 0.5 ( 0 ) ( 1.70 ) 2 x 1 = 0 + 0 ∴ x 1 = 0 m \begin{alignedat}{2}
&x_1 = U_{x1}t\, &+& \,0.5a_xt^2\\
&x_1 = 0(1.70)\, &+&\, 0.5(0)(1.70)^2\\
&x_1 = 0 + 0\\
∴& x_1 = 0m
\end{alignedat} ∴ x 1 = U x 1 t x 1 = 0 ( 1.70 ) x 1 = 0 + 0 x 1 = 0 m + + 0.5 a x t 2 0.5 ( 0 ) ( 1.70 ) 2
y 1 = U y 1 t + 0.5 a y t 2 y 1 = ( 25 ) ( 1.70 ) + 0.5 ( − 10 ) ( 1.70 ) 2 y 1 = 42.5 − 14.45 ∴ y 1 = 28.05 m \begin{alignedat}{2}
&y_1 = U_{y1}t \,&+& \,0.5a_yt^2\\
&y_1 = (25)(1.70) \,&+&\, 0.5(-10)(1.70)^2\\
&y_1 = 42.5\, &-&\, 14.45\\
∴& y_1 = 28.05m
\end{alignedat} ∴ y 1 = U y 1 t y 1 = ( 25 ) ( 1.70 ) y 1 = 42.5 y 1 = 28.05 m + + − 0.5 a y t 2 0.5 ( − 10 ) ( 1.70 ) 2 14.45
For body 2
θ \theta θ 2 = 60 ° 60\text{\textdegree} 60 °
U y 2 = v 0 s i n θ ; U x 2 = v 0 c o s θ U y 2 = 25 s i n 60 ; U x 2 = 25 c o s 60 U y 2 = 21.65 m / s ; U x 2 = 12.5 m / s \begin{aligned}
U_{y2} = v_0sinθ \quad \,\,\, &; \quad U_{x2} = v_0cosθ\\
U_{y2}= 25sin60 \quad & ; \quad U_{x2} = 25cos60\\
U_{y2}= 21.65m/s\,\, & ; \quad U_{x2} = 12.5m/s
\end{aligned} U y 2 = v 0 s in θ U y 2 = 25 s in 60 U y 2 = 21.65 m / s ; U x 2 = v 0 cos θ ; U x 2 = 25 cos 60 ; U x 2 = 12.5 m / s
x 2 = U x 2 t + 0.5 a x t 2 x 2 = 12.5 ( 1.70 ) + 0.5 ( 0 ) ( 1.70 ) 2 x 2 = 21.25 + 0 ∴ x 2 = 21.25 m \begin{alignedat}{2}
&x_2 = U_{x2}t \, &+&\, 0.5a_xt^2\\
&x_2 = 12.5(1.70) \,&+& \,0.5(0)(1.70)^2\\
&x_2 = 21.25 &+&\, 0\\
∴ &x_2 = 21.25m
\end{alignedat} ∴ x 2 = U x 2 t x 2 = 12.5 ( 1.70 ) x 2 = 21.25 x 2 = 21.25 m + + + 0.5 a x t 2 0.5 ( 0 ) ( 1.70 ) 2 0
y 2 = U y 2 t + 0.5 a y t 2 y 2 = ( 21.65 ) ( 1.70 ) + 0.5 ( − 10 ) ( 1.70 ) 2 y 2 = 36.81 − 14.45 ∴ y 2 = 22.36 m \begin{alignedat}{2}
&y_2 = U_{y2}t \,&+&\, 0.5a_yt^2\\
&y_2 = (21.65)(1.70)\, &+&\, 0.5(-10)(1.70)^2\\
&y_2 = 36.81 &-& \,14.45\\
∴&y_2= 22.36m
\end{alignedat} ∴ y 2 = U y 2 t y 2 = ( 21.65 ) ( 1.70 ) y 2 = 36.81 y 2 = 22.36 m + + − 0.5 a y t 2 0.5 ( − 10 ) ( 1.70 ) 2 14.45
from, distance between 2 points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
distance between the 2 bodies = ( 21.25 − 0 ) 2 + ( 22.36 − 28.05 ) 2 \sqrt{(21.25-0)^2+(22.36-28.05)^2} ( 21.25 − 0 ) 2 + ( 22.36 − 28.05 ) 2
= ( 21.25 ) 2 + ( − 5.69 ) 2 \sqrt{(21.25)^2+(-5.69)^2} ( 21.25 ) 2 + ( − 5.69 ) 2
= 451.56 + 32.38 \sqrt{451.56+32.38} 451.56 + 32.38
= 483.94 \sqrt{483.94} 483.94
= 22 m 22m 22 m
∴ \therefore ∴ the distance between the two bodies is 22m
Comments