Question #133114
) Given, E ̅ = E ̅m sin(x) sin (t) a ̂y and H ̅ = E ̅m/µo cos(x) cos (t) a ̂z. Determine whether these fields satisfy Maxwell’s equations or not.
1
Expert's answer
2020-09-15T10:04:14-0400

Let's substitute them to the Maxwell’s equations (with no charges and currents in vacuum):


D=0B=0×E=Bt×H=Dt\nabla\cdot\mathbf{D}= 0\\ \nabla\cdot\mathbf{B}=0\\ \nabla\times\mathbf{E}=-\frac{\partial\mathbf{B}}{\partial t}\\ \nabla\times\mathbf{H}= \frac{\partial\mathbf{D}}{\partial t}

Considering the fact that D=ε0E\mathbf{D} = \varepsilon_0\mathbf{E} and B=μ0H\mathbf{B} = \mu_0\mathbf{H}, obtain:

1.

D=ε0(Exx+Eyy+Ezz)\nabla\cdot\mathbf{D}= \varepsilon_0 \left ( \dfrac{\partial E_x}{\partial x} + \dfrac{\partial E_y}{\partial y}+ \dfrac{\partial E_z}{\partial z} \right)

As far as E=(0,Emsin(x)sin(t),0)\mathbf{E} = (0,E_m\sin(x)sin(t),0), y-coordinate does not depend on y, so the divergence is equal to 0: D=0\nabla\cdot\mathbf{D}=0. The first equation is satisfied.


2. Similarlly, as far as H=(0,0,Em/μ0cos(x),cos(t))\mathbf{H} = (0,0,E_m/\mu_0 \cos(x), \cos(t)), the z-coordinate does not depend on z, thus, the divergens will be equal to 0: B=H=0\nabla\cdot\mathbf{B} = \nabla\cdot\mathbf{H}=0. The second equation is satisfied.


3. The curle is:


×E=(EzyEyz)ex+(ExzEzx)ey+(EyxExy)ez\nabla\times\mathbf{E}= \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \mathbf e_x+ \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \mathbf e_y+ \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \mathbf e_z

From all these derivatives only Eyx\dfrac{\partial E_y}{\partial x} will not be equal to 0. Let's calculate it:


Eyx=Emsin(t)xsin(x)=Emsin(t)cos(x)\dfrac{\partial E_y}{\partial x} =E_m\sin(t)\dfrac{\partial }{\partial x}\sin(x) = E_m\sin(t)\cos(x)

Thus:


×E=(0,0,Emsin(t)cos(x))\nabla\times\mathbf{E}= (0,0,E_m\sin(t)\cos(x) )

On the other hand:


Bt=μ0Ht=(0,0,t[Emcos(x),cos(t)])==(0,0,Emsin(t)cos(x))-\dfrac{\partial\mathbf{B}}{\partial t} =-\mu_0\dfrac{\partial\mathbf{H}}{\partial t}= \left(0,0, - \dfrac{\partial}{\partial t} [E_m \cos(x), \cos(t)] \right)=\\ =(0,0, E_m\sin(t)\cos(x))

Thus, ×E=Bt\nabla\times\mathbf{E}=-\frac{\partial\mathbf{B}}{\partial t} and the third equation is also satisfied.


4. The curle is:


×H=(HzyHyz)ex+(HxzHzx)ey+(HyxHxy)ez\nabla\times\mathbf{H}= \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right) \mathbf e_x+ \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) \mathbf e_y+ \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \mathbf e_z

From all these derivatives only Hzx-\dfrac{\partial H_z}{\partial x} will not be equal to 0. Let's calculate it:


Hzx=Em/μ0cos(t)xcos(x)=Em/μ0cos(t)sin(x)-\dfrac{\partial H_z}{\partial x} =-E_m/\mu_0\cos(t)\dfrac{\partial }{\partial x}\cos(x) =E_m/\mu_0\cos(t)\sin(x)

Thus:


×H=1μ0(0,Emcos(t)sin(x),0)\nabla\times\mathbf{H}= \dfrac{1}{\mu_0} (0,E_m\cos(t)\sin(x),0)

On the other hand:


Dt=ε0Et=ε0(0,t[Emsin(x),sin(t)],0)==ε0(0,Emcos(t)sin(x),0)\dfrac{\partial\mathbf{D}}{\partial t} =\varepsilon_0\dfrac{\partial\mathbf{E}}{\partial t}= \varepsilon_0\left(0, \dfrac{\partial}{\partial t} [E_m \sin(x), \sin(t)],0 \right)=\\ =\varepsilon_0(0,E_m\cos(t)\sin(x),0)

Because of the coeffitients 1μ0\dfrac{1}{\mu_0} and ε0\varepsilon_0 the right hand side is not equal to the left hand side:


×HDt\nabla\times\mathbf{H}\ne \frac{\partial\mathbf{D}}{\partial t}

Thus, the fourth equation is NOT satisfied.


Answer. These fields do not satisfy Maxwell’s equations.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS