Problem 1:
Density "\\rho=\\frac{m}{V}"
"\\nu=\\frac{m}{M}=\\frac{N}{N_A}" whence "N=\\frac{m}{M}N_A=\\frac{\\rho*V}{M}*N_A"
Molar mass of water: "M(H_2O)=18*10^{-3}\\frac{kg}{mole}"
Density of water: "\\rho=1000\\frac{kg}{m^3}"
Volume "V=2.56*10^{[-6}m^3"
Avogadro number: "N_A=6.02*10^{23}mole^{-1}"
So, the number of water molecules:
"N==\\frac{10^3*2.56*10^{-6}}{18*10^{-3}}*6.02*10^{23}=0.86*10^{23}"
Problem 2:
a) "\\nu=\\frac{m}{M}"
Molar mass of ammonia "M=17\\frac{g}{mole}"
"\\nu=\\frac{4.35}{17}=0.26" moles
b) "\\nu=\\frac{N}{N_A}" whence "N=\\nu*N_A"
"N=0.26*6.02*10^{23}=1.57*10^{23}"
c) By the Mendeleev-Clapeiron equation:
"PV=\\nu*RT"
P is pressure, "P=10^5Pa"
T is absolute temperature (in degrees of Kelvin), "T=t+273=25+273=298" K
R is universal gas constant "R=8.31\\frac{J}{K*mole}" . Then the volume:
"V=\\frac{\\nu*RT}{P}"
"V=\\frac{0.26*8.31*298}{10^5}=6.4" (litres)
Comments
Leave a comment