Question #125249
A mass of ideal gas of volume 400 cm3 at a temperature of 27 ˚C expands adiabatically until its volume is 500 cm3. Calculate the new temperature. The gas is then compressed isothermally until its pressure returns to the original value. Calculate the final volume of the gas. Assume γ = 1.40.
1
Expert's answer
2020-07-07T10:03:09-0400

T1V1γ1=T2V2γ1T2=T1V1γ1V2γ1=(27+273)(400106500106)1.41=274KT_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}\to T_2=\frac{T_1V_1^{\gamma-1}}{V_2^{\gamma-1}}=(27+273)(\frac{400\cdot10^{-6}}{500\cdot10^{-6}})^{1.4-1}=274 K


p2V2=p3V3=p1V3V3=p2V2p1p_2V_2=p_3V_3=p_1V_3\to V_3=\frac{p_2V_2}{p_1}


p1V1γ=p2V2γp2p1=V1γV2γp_1V_1^\gamma=p_2V_2^\gamma\to \frac{p_2}{p_1}=\frac{V_1^\gamma}{V_2^\gamma}


V3=V1γV2γV2=(400106500106)1.4500106=366106V_3=\frac{V_1^\gamma}{V_2^\gamma}V_2=(\frac{400\cdot10^{-6}}{500\cdot10^{-6}})^{1.4}\cdot 500\cdot10^{-6}=366\cdot10^{-6} m3=366m^3=366 cm3cm^3






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS