T1V1γ−1=T2V2γ−1→T2=T1V1γ−1V2γ−1=(27+273)(400⋅10−6500⋅10−6)1.4−1=274KT_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}\to T_2=\frac{T_1V_1^{\gamma-1}}{V_2^{\gamma-1}}=(27+273)(\frac{400\cdot10^{-6}}{500\cdot10^{-6}})^{1.4-1}=274 KT1V1γ−1=T2V2γ−1→T2=V2γ−1T1V1γ−1=(27+273)(500⋅10−6400⋅10−6)1.4−1=274K
p2V2=p3V3=p1V3→V3=p2V2p1p_2V_2=p_3V_3=p_1V_3\to V_3=\frac{p_2V_2}{p_1}p2V2=p3V3=p1V3→V3=p1p2V2
p1V1γ=p2V2γ→p2p1=V1γV2γp_1V_1^\gamma=p_2V_2^\gamma\to \frac{p_2}{p_1}=\frac{V_1^\gamma}{V_2^\gamma}p1V1γ=p2V2γ→p1p2=V2γV1γ
V3=V1γV2γV2=(400⋅10−6500⋅10−6)1.4⋅500⋅10−6=366⋅10−6V_3=\frac{V_1^\gamma}{V_2^\gamma}V_2=(\frac{400\cdot10^{-6}}{500\cdot10^{-6}})^{1.4}\cdot 500\cdot10^{-6}=366\cdot10^{-6}V3=V2γV1γV2=(500⋅10−6400⋅10−6)1.4⋅500⋅10−6=366⋅10−6 m3=366m^3=366m3=366 cm3cm^3cm3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments