Question #125006
A 90 ˚C liquid of mass 1 kg and specific heat capacity 4.5 x 103
J/kg K is poured into a
brass calorimeter of mass 150 g containing an unknown liquid of mass 20 g at a temperature
of 25 ˚C. If the final temperature of the mixture is 70 ˚C, determine the specific heat
capacity of the unknown liquid. The s.h.c of brass is 380 J/kg K.
1
Expert's answer
2020-07-03T10:03:31-0400

c1=4500JkgKc_1 = 4500 \dfrac{J}{kg \cdot K} m1=1000gm_1 = 1000g T1=90CT_1 = 90^\circ C


c2=380JkgKc_2 = 380 \dfrac{J}{kg \cdot K} m2=150gm_2 = 150g T2=T3=25CT_2 = T_3 = 25^\circ C


c3=?c_3 = ? m3=20gm_3 = 20g T=70CT = 70^\circ C


c1m1(TT1)+c2m2(TT2)+c3m3(TT3)=0c_1 m_1(T - T_1) + c_2 m_2(T - T_2) + c_3 m_3(T - T_3) = 0


c3m3(TT3)=c1m1(T1T)+c2m2(T2T)c_3 m_3(T - T_3) = c_1 m_1(T_1 - T) + c_2 m_2(T_2 - T)


c3=c1m1(T1T)+c2m2(T2T)m3(TT3)=c_3 = \dfrac{c_1 m_1(T_1 - T) + c_2 m_2(T_2 - T)}{m_3(T - T_3)} = =4500JkgK1000g(90C70C)+380JkgK150g(25C70C)20g(70C25C)== \dfrac{ 4500 \dfrac{J}{kg \cdot K} \cdot 1000g \cdot (90^\circ C - 70^\circ C) + 380 \dfrac{J}{kg \cdot K} \cdot 150g \cdot (25^\circ C - 70^\circ C)}{20g \cdot (70^\circ C - 25^\circ C)} =


=97150JkgK= 97150 \dfrac{J}{kg \cdot K}


Please, check your task, because answer is a huge value for any substance. Then you should use my formulas with new values. Good luck!







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS