Question #122544
0.05kg of CO2 with MW=44, occupying a volume of 0.03m³ at 1.025bar, is compressed reversible until the pressure is 6.15bar
Calculate the final temperature, the work done on the CO², the heat flow to or from the cylinder walls
When the process is according to law PV 1.4=constant
When the process is isothermal
When the process takes place in a perfectly thermally insulated cylinder
Assume CO2 to be a perfect gas take 1.3
1
Expert's answer
2020-06-17T09:22:10-0400

p1V1=mMRT1T1=p1V1MmR=1025000.030.0440.058.31326Kp_1V_1=\frac{m}{M}RT_1\to T_1=\frac{p_1V_1M}{m R}=\frac{102500\cdot 0.03\cdot 0.044}{0.05\cdot8.31}\approx326 K


(a) pV1.4=constpV^{1.4}=const


T2T1=(p2p1)1.411.4T2=T1(p2p1)=326(615000102500)1.411.4=544K\frac{T_2}{T_1}=(\frac{p_2}{p_1})^{\frac{1.4-1}{1.4}}\to T_2=T_1(\frac{p_2}{p_1})=326\cdot(\frac{615000}{102500})^{\frac{1.4-1}{1.4}}=544K


p1V11.4=p2V21.4V2=(p1V11.4p2)1/1.4=(1025000.031.4615000)1/1.4=0.00834m3p_1V_1^{1.4}=p_2V_2^{1.4}\to V_2=(\frac{p_1V_1^{1.4}}{p_2})^{1/1.4}=(\frac{102500\cdot 0.03^{1.4}}{615000})^{1/1.4}=0.00834m^3


W=p1V1p2V2n1=1025000.036150000.008341.41=5135JW=\frac{p_1V_1-p_2V_2}{n-1}=\frac{102500\cdot 0.03-615000\cdot 0.00834}{1.4-1}=-5135J ; Wout=5135JW_{out}=5135J


Q=ΔU+W=mMi2RΔT+W=0.050.044628.312185135=1041JQ=\Delta U+W=\frac{m}{M}\frac{i}{2}R\Delta T+W=\frac{0.05}{0.044}\cdot\frac{6}{2}\cdot8.31\cdot 218-5135=1041J


(b) T=constT=const


p1V1=p2V2V2=p1V1p2=1025000.03615000=0.005m3p_1V_1=p_2V_2\to V_2=\frac{p_1V_1}{p_2}=\frac{102500\cdot 0.03}{615000}=0.005m^3


W=mMRTlnp1p2=0.050.0448.31326ln102500615000=5516J;W=\frac{m}{M}RT\ln{\frac{p_1}{p_2}}=\frac{0.05}{0.044}\cdot8.31\cdot 326\cdot ln{\frac{102500}{615000}}=-5516J; Wout=5516JW_{out}=5516J


Q=ΔU+W=05516=5516JQ=\Delta U+W=0-5516=-5516J


(c) Q=0Q=0


T2T1=(p2p1)1.311.3T2=T1(p2p1)=326(615000102500)1.311.3=493K\frac{T_2}{T_1}=(\frac{p_2}{p_1})^{\frac{1.3-1}{1.3}}\to T_2=T_1(\frac{p_2}{p_1})=326\cdot(\frac{615000}{102500})^{\frac{1.3-1}{1.3}}=493K


p1V11.3=p2V21.3V2=(p1V11.3p2)1/1.3=(1025000.031.3615000)1/1.3=0.00756m3p_1V_1^{1.3}=p_2V_2^{1.3}\to V_2=(\frac{p_1V_1^{1.3}}{p_2})^{1/1.3}=(\frac{102500\cdot 0.03^{1.3}}{615000})^{1/1.3}=0.00756m^3


W=p1V1p2V2n1=1025000.036150000.007561.31=5248J;W=\frac{p_1V_1-p_2V_2}{n-1}=\frac{102500\cdot 0.03-615000\cdot 0.00756}{1.3-1}=-5248J; Wout=5248JW_{out}=5248J


Q=0Q=0








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Clara ogu
24.06.20, 03:53

Thanks alot the solution to the question really help

LATEST TUTORIALS
APPROVED BY CLIENTS