Solution.
The van der Waals equation is a model equation of state of an imperfect gas.
"(P+\\dfrac{N^2a}{V^2})(V-Nb)=Nk_bT;"
where P is the pressure, V is the volume, N is the number of molecules, T is the temperature, kB is the Boltzmann constant, and a and b are characteristic of each real steel gas, which will be defined below.
"P_k=\\dfrac{a}{27b^2}; V_k=3b; T_k=\\dfrac{8a}{27bR};"
"P_k=2.5atm=2.5\\sdot10^{5}Pa;"
"\\rho_k=0.069g\/cm^3=69kg\/m^3;"
"\\mu(He)=4\\sdot10^{-3}kg\/mol;"
"T_k-?;"
"V_k=\\dfrac{3}{8}\\dfrac{m}{\\mu}\\dfrac{RT_k}{P_k}\\implies"
"T_k=\\dfrac{8\\mu P_kV_k}{3mR_{He}}= \\dfrac{8\\mu P_k}{3\\rho_kR_{He}};"
"R_{He}=\\dfrac{R}{\\mu};"
"R_{He}=\\dfrac{8.31J\/molK}{4\\sdot10^{-3}kg\/mol}=2.0775\\sdot10^3J\/(kgK)" ;
"T_k=\\dfrac{8\\sdot4\\sdot10^{-3}\\sdot2.5\\sdot10^5}{3\\sdot69\\sdot2.0775\\sdot10^3}=0.019K;"
Answer: "T_k=0.019K."
Comments
Leave a comment