Question #120755
A certain mass of a gas at standard temperature and pressure (STP) is expanded to 3 times its
o rigin a l v o lu m e un d e r ad iab a tic co n d itio n s. C a lc u la te th e re su ltin g te m p e ra tu re a n d pressure. (Take y = 1.4).
1
Expert's answer
2020-06-09T13:22:02-0400

For adiabatic processes pVγ=constpV^{\gamma}=\text{const} . Here γ=1.4\gamma=1.4 , therefore for initial and final conditions

p1V1γ=p2V2γp_1V_1^{\gamma} = p_2V_2^{\gamma} . We know that V2=3V1,V_2 = 3V_1, therefore

p2=p1(V1V2)γ=p1(13)γ.p_2 = p_1 \left(\dfrac{V_1}{V_2} \right)^{\gamma} = p_1 \left(\dfrac13 \right)^{\gamma} . Standard temperature and pressure imply the temperature T=273.15K,p=105Pa.T=273.15\,\mathrm{K}, p = 10^5\,\mathrm{Pa}. So p1=105Pap_1 = 10^5\,\mathrm{Pa} and

p2=105Pa(13)1.42.15104Pa.p_2 = 10^5\,\mathrm{Pa}\cdot \left(\dfrac13 \right)^{1.4} \approx 2.15 \cdot10^4\,\mathrm{Pa}.

According to the ideal gas law,

p1V1=νRT1,  p2V2=νRT2,p_1V_1 = \nu RT_1, \; p_2V_2 = \nu RT_2, so

p2V2p1V1=T2T1,    T2=T1p2V2p1V1=273.152.15104Pa3105Pa=176K.\dfrac{p_2V_2}{p_1V_1} = \dfrac{T_2}{T_1}, \;\; T_2 = T_1 \cdot \dfrac{p_2V_2}{p_1V_1} = 273.15\cdot \dfrac{2.15\cdot10^4\,\mathrm{Pa}\cdot3}{10^5\,\mathrm{Pa}} = 176\,\mathrm{K}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS