Let us calculate the change of energy. First, the vapour should be transformed into water with temperature 100 C, so (see https://en.wikipedia.org/wiki/Enthalpy_of_vaporization)
"|\\Delta Q_1| = L_wm_w = 2260000\\,\\mathrm{J\/kg}\\,\\cdot1\\,\\mathrm{kg} = 2260000\\,\\mathrm{J}."
Next, we should cool this water to the temperature 0 C, so
"|\\Delta Q_2| = c_wm_w\\Delta T = 4200\\,\\mathrm{J\/kg\/K}\\cdot1\\,\\mathrm{kg}\\cdot100\\,\\mathrm{K} = 420000\\,\\mathrm{J}."
Next, we should transform the water into ice, so (see https://en.wikipedia.org/wiki/Enthalpy_of_fusion)
"|\\Delta Q_3| = \\lambda_i m_w =334000\\,\\mathrm{J\/kg}\\cdot1\\,\\mathrm{kg} = 334000\\,\\mathrm{J}."
Then, we should cool this ice, so
"|\\Delta Q_4| = c_im_w\\Delta T_2 = 2110\\,\\mathrm{J\/kg\/K}\\cdot1\\,\\mathrm{kg}\\cdot5\\,\\mathrm{K} = 10550\\,\\mathrm{J}."
Therefore, the total amount of heat to be removed is
"|\\Delta Q| = |\\Delta Q_1| +|\\Delta Q_2| +|\\Delta Q_3| +|\\Delta Q_4| = 2260000 + 420000+334000+10550 = 3024550\\,\\mathrm{J} \\approx 3\\,\\mathrm{MJ}."
Comments
Leave a comment