Question #119878
We want to condense 1 kg of water vapour at 100 c to a temperature of -5 c (Ice). How much heat should be removed?
1
Expert's answer
2020-06-03T12:02:59-0400

Let us calculate the change of energy. First, the vapour should be transformed into water with temperature 100 C, so (see https://en.wikipedia.org/wiki/Enthalpy_of_vaporization)

ΔQ1=Lwmw=2260000J/kg1kg=2260000J.|\Delta Q_1| = L_wm_w = 2260000\,\mathrm{J/kg}\,\cdot1\,\mathrm{kg} = 2260000\,\mathrm{J}.

Next, we should cool this water to the temperature 0 C, so

ΔQ2=cwmwΔT=4200J/kg/K1kg100K=420000J.|\Delta Q_2| = c_wm_w\Delta T = 4200\,\mathrm{J/kg/K}\cdot1\,\mathrm{kg}\cdot100\,\mathrm{K} = 420000\,\mathrm{J}.

Next, we should transform the water into ice, so (see https://en.wikipedia.org/wiki/Enthalpy_of_fusion)

ΔQ3=λimw=334000J/kg1kg=334000J.|\Delta Q_3| = \lambda_i m_w =334000\,\mathrm{J/kg}\cdot1\,\mathrm{kg} = 334000\,\mathrm{J}.

Then, we should cool this ice, so

ΔQ4=cimwΔT2=2110J/kg/K1kg5K=10550J.|\Delta Q_4| = c_im_w\Delta T_2 = 2110\,\mathrm{J/kg/K}\cdot1\,\mathrm{kg}\cdot5\,\mathrm{K} = 10550\,\mathrm{J}.

Therefore, the total amount of heat to be removed is

ΔQ=ΔQ1+ΔQ2+ΔQ3+ΔQ4=2260000+420000+334000+10550=3024550J3MJ.|\Delta Q| = |\Delta Q_1| +|\Delta Q_2| +|\Delta Q_3| +|\Delta Q_4| = 2260000 + 420000+334000+10550 = 3024550\,\mathrm{J} \approx 3\,\mathrm{MJ}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS