Question #106810
The equation of motion of classical harmonic oscillator is expressed by x=asin(omega)t.Show that probability of finding the particle between x and x+dx is given by,
P(x) dx=(dx)÷ (π√[d^2-x^2])
1
Expert's answer
2020-03-30T08:08:26-0400

As per the question,

wave equation is given as x=asin(ω)tx=a\sin(\omega)t

Let dP=2dtT(i)dP=\dfrac{2dt}{T}-------------(i)

Where T is the time period and dt is the time taken in x to x+dx

x=asin(ω)tx=a\sin(\omega)t

dx=aωcos(ωt)dtdx=a\omega \cos(\omega t)dt

dt=dxaωcos(ωt)\Rightarrow dt=\dfrac{dx}{a\omega \cos(\omega t)}

now

from the equation (i),

dP=2dxaωcos(ωt)TdP=\dfrac{2dx}{a\omega\cos(\omega t)T}

we know that ω=2πT\omega=\dfrac{2\pi}{T}

dP=2dxa2πTcos(ωt)T=2dx2πacos(ωt)\Rightarrow dP=\dfrac{2dx}{a\dfrac{2\pi}{T}\cos(\omega t)T}=\dfrac{2dx}{2\pi a\cos(\omega t)}

now we know that x=asin(ω)tx=a\sin(\omega)t

sin(ωt)=xa\sin(\omega t)=\dfrac{x}{a}

cos(ωt)=1sin2(ωt)\cos(\omega t)=\sqrt{1-\sin^2(\omega t)}

cos(ωt)=1(xa)2\Rightarrow \cos(\omega t)=\sqrt{1-(\dfrac{x}{a})^2}

dP=2dx2πacos(ωt)\Rightarrow dP=\dfrac{2dx}{2\pi a\cos(\omega t)}

dP=2dx2πa1(xa)2\Rightarrow dP=\dfrac{2dx}{2\pi a\sqrt{1-(\dfrac{x}{a})^2}}

dP=dxπa2(x)2\Rightarrow dP=\dfrac{dx}{\pi \sqrt{a^2-(x)^2}}

dPdx=1πa2x2\Rightarrow \dfrac{dP}{dx}=\dfrac{1}{\pi \sqrt{a^2-x^2}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS