Question #102466
8 grams of oxygen at STP is compressed adiabatically to a pressure of 10 atm .How much work id done on the gas
1
Expert's answer
2020-02-12T10:04:11-0500

For adiabatic process


A=mMRT1γ1(1(V1V2)γ1)=mMRT1γ1(1((p2p1)1γ)γ1)A=\frac{m}{M} \frac{RT_1}{\gamma-1}(1-(\frac{V_1}{V_2})^{\gamma-1})=\frac{m}{M} \frac{RT_1}{\gamma-1}(1-((\frac{p_2}{p_1})^{\frac{1}{\gamma}})^{\gamma-1})


A=mMRT1γ1(1((p2p1)γ1γ))A=\frac{m}{M} \frac{RT_1}{\gamma-1}(1-((\frac{p_2}{p_1})^{\frac{\gamma-1}{\gamma}}))


γ=i+2i=5+25=1.4\gamma=\frac{i+2}{i}=\frac{5+2}{5}=1.4


So, we have


A=mMRT1γ1(1((p2p1)γ1γ))=A=\frac{m}{M} \frac{RT_1}{\gamma-1}(1-((\frac{p_2}{p_1})^{\frac{\gamma-1}{\gamma}}))=


=0.0080.0328.312731.41(1((10101325101325)1.411.4))1320J=\frac{0.008}{0.032} \frac{8.31\cdot 273}{1.4-1}(1-((\frac{10\cdot 101325}{101325})^{\frac{1.4-1}{1.4}}))\approx-1320J








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS