a) Find a temperature in state 2 using this equation
"T_1V_1^{\\gamma-1}=T_2V_2^{\\gamma-1}""T_2=(\\frac{V_1}{V_2})^{\\gamma-1}T_1""T_2=(\\frac{8}{1})^{\\frac{5}{3}-1}\\cdot 300=1200 (K)"b) moles of gas
"\\nu=\\frac{RT_1}{P_1V_1}""\\nu=\\frac{8.31\\cdot 300}{10^5 \\cdot 0.008}=3 (moles)"c)The average translation kinetic energy per mole
before
"<E_1>=\\frac{3}{2}RT_1""<E_1>=\\frac{3}{2}\\cdot 8.31\\cdot 300=3739,5 (\\frac{J}{mol})"
after
"<E_2>=\\frac{3}{2}\\cdot 8.31\\cdot 1200=14958(\\frac{J}{mol})" d) The ratio of the squares of the rms speeds
"\\frac{m_0v^2}{2}=\\frac{3}{2}kT""\\frac{v_1^2}{v_2^2}=\\frac{T_1}{T_2}=\\frac{300}{1200}=0.25" e)Show that the gas is truly monoatomic
"p_1V_1^{\\gamma}=p_2V_2^{\\gamma}" from this
"\\gamma=\\frac{ln(\\frac{p_2}{p_1})}{ln(\\frac{V_1}{V_2})}=1.667=\\frac{5}{3}" it is monoatomic gas
Comments
Leave a comment