When the collision is elastic the energy of the system and total momentum is conserved so
E(n0)=E(n)+E(nuc)P(n0)=P(n)+P(nuc)E(n0)=(m(n)v(n0)2)/2E(n)=(m(n)v(n)2)/2E(nuc)=(m(nuc)v(nuc)2)/2=(11.1m(n)v(nuc)2)/2P(n0)=m(n)v(n0)P(n)=m(n)v(n)P(nuc)=m(nuc)v(nuc)=11.1m(n)v(nuc)P(n)=P(n0)−P(nuc)=m(n)v(n0)−11.1m(n)v(nuc)=m(n)v(n)v(n)=(v(n0)−11.1v(nuc)) from the first equation
(m(n)v(n0)2)/2=(m(n)(v(n0)−11.1v(nuc))2)/2+(11.1m(n)v(nuc)2)/2v(n0)2=(v(n0)−11.1v(nuc))2+11.1v(nuc)2v(n0)2=v(n0)2−22.2v(n0)v(nuc)+123.21v(nuc)2+11.1v(nuc)222.2v(n0)v(nuc)=134.31v(nuc)2v(nuc)=(22.2/134.31)v(n0)=(1/6.05)v(n0) the fraction of the neutron energy transmitted to the nucleus can be calculated as
f=E(nuc)/E(n0)=(11.1m(n)(((1/6.05v)(n0))2))/(m(n)v(n0)2)=0.303
Comments