Question #99640
A neutron in a reactor makes an elastic headon collision with the nucleus of an atom initially at rest.
Assume: The mass of the atomic nucleus is
about 11.1 the mass of the neutron.
What fraction of the neutron’s kinetic energy is transferred to the atomic nucleus?
Don't round answer.
1
Expert's answer
2019-12-04T08:44:46-0500

When the collision is elastic the energy of the system and total momentum is conserved so


E(n0)=E(n)+E(nuc)E(n0) = E(n) +E(nuc)P(n0)=P(n)+P(nuc)P(n0)=P(n)+P(nuc)E(n0)=(m(n)v(n0)2)/2E(n0)=(m(n)v(n0)^2)/2E(n)=(m(n)v(n)2)/2E(n)=(m(n)v(n)^2)/2E(nuc)=(m(nuc)v(nuc)2)/2=(11.1m(n)v(nuc)2)/2E(nuc)=(m(nuc)v(nuc)^2)/2=(11.1m(n)v(nuc)^2)/2P(n0)=m(n)v(n0)P(n0)=m(n)v(n0)P(n)=m(n)v(n)P(n)=m(n)v(n)P(nuc)=m(nuc)v(nuc)=11.1m(n)v(nuc)P(nuc)=m(nuc)v(nuc)=11.1m(n)v(nuc)P(n)=P(n0)P(nuc)=m(n)v(n0)11.1m(n)v(nuc)=m(n)v(n)P(n)=P(n0)-P(nuc)=m(n)v(n0)-11.1m(n)v(nuc)=m(n)v(n)v(n)=(v(n0)11.1v(nuc))v(n) =(v(n0)-11.1v(nuc))

from the first equation


(m(n)v(n0)2)/2=(m(n)(v(n0)11.1v(nuc))2)/2+(11.1m(n)v(nuc)2)/2(m(n)v(n0)^2)/2=(m(n)(v(n0)-11.1v(nuc))^2)/2+(11.1m(n)v(nuc)^2)/2v(n0)2=(v(n0)11.1v(nuc))2+11.1v(nuc)2v(n0)^2=(v(n0)-11.1v(nuc))^2+11.1v(nuc)^2v(n0)2=v(n0)222.2v(n0)v(nuc)+123.21v(nuc)2+11.1v(nuc)2v(n0)^2=v(n0)^2-22.2v(n0)v(nuc)+123.21v(nuc)^2+11.1v(nuc)^222.2v(n0)v(nuc)=134.31v(nuc)222.2v(n0)v(nuc)=134.31v(nuc)^2v(nuc)=(22.2/134.31)v(n0)=(1/6.05)v(n0)v(nuc)=(22.2/134.31)v(n0)=(1/6.05)v(n0)

the fraction of the neutron energy transmitted to the nucleus can be calculated as


f=E(nuc)/E(n0)=(11.1m(n)(((1/6.05v)(n0))2))/(m(n)v(n0)2)=0.303f=E(nuc)/E(n0)=(11.1m(n)(((1/6.05v)(n0))^2))/(m(n)v(n0)^2)=0.303


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS