We apply the kinetic energy theorem
For the first case we write
"0.368 \\cdot \\Delta E_k=F \\cdot S" (1)
For the second case we write
"x \\cdot \\Delta E_k=F \\cdot S \\cdot \\cos(66.3^0)" (2)
divide the first equation into the second
"\\frac{}{}" "\\frac{0.368 \\cdot \\Delta E_k}{x \\cdot \\Delta E_k}=\\frac{F \\cdot S }{F \\cdot S \\cdot \\cos(66.3^0)}"
reduce these terms we get the ratio
"\\frac{0.368 }{x}=\\frac{1 }{cos(66.3^0)}"
Then the desired value is equal to (Increase in kinetic energy in the second case)
"x=0.368 \\cdot \\cos(66.3^0)=0.368 \\cdot 0.402=0.148=14.8{\\%}"
Comments
Leave a comment