According to Newton’s second law of motion:
"F=m*a;"
Centripetal acceleration a can be expressed:Â
"a=\\upsilon^2\/r;"
So the centripetal force acting on the car :
"F=(m*\\upsilon^2)\/r;"
Force due to friction:
"f=\\mu*N;"
If car is situated in the origin, Force equations at this maximum speed for the car are:
"(m*\\upsilon^2)\/r=N*sin\\theta+\\mu*N*cos\\theta"
"m*g+\\mu*N*sin\\theta=N*cos\\theta;"
Due to condition, "\\mu=0;"
After equations reduce:
"(m*\\upsilon^2)\/r=N*sin\\theta;"
"m*g=N*cos\\theta;"
Dive first with second:
"(M*\\upsilon^2\/r)\/mg=(N*sin\\theta)\/(N*cos\\theta);"
As a result we get:
"tan\\theta=\\upsilon^2\/(m*g);"
The final formula is:
"\\theta=arctan(\\upsilon^2\/(m*g));"
"\\theta=arctan(35^2\/(400*9.8))" "=arctan(0.3125)=17.35;"
Answer: "\\theta=17.35."
Comments
Leave a comment