suppose
"v_x' =\\frac{dx'}{dt'}; v_y'=\\frac{dy'}{dt'};v_z'\\frac{dz'}{dt'}""dx=\\frac{dx'+v_0dt'}{\\sqrt{1-\\frac{v_0^2}{c^2}}}; dy=dy'; dz=dz'; dt=\\frac{dt'+\\frac{v_0}{c^2}dx'}{\\sqrt{1-\\frac{v_0^2}{c^2}}}" And we have it
"v_x=\\frac{v_x'+v_0}{1+\\frac{v_0v_x}{c^2}}; v_y=\\frac{v_y'\\sqrt{1-\\frac{v_0^2}{c^2}}}{1+\\frac{v_0v_x}{c^2}}; v_z=\\frac{v_z'\\sqrt{1-\\frac{v_0^2}{c^2}}}{1+\\frac{v_0v_x}{c^2}}"
If the body moves parallel to the x axis in this case, the law of addition of velocities takes the form
"v_x=\\frac{v_x'+v_0}{1+\\frac{v_0v_x}{c^2}}"
Comments
Leave a comment