Solution:
"\\upsilon=\\upsilon_0-at"
But
"\\upsilon=0"
So:
"\\upsilon_0=at"
And than:
"t=\\frac{\\upsilon_0}{a}"
Distance before the stopping:
"S=\\upsilon_0t-\\frac{at^2}{2}=\\frac{\\upsilon^2_0}{a}-\\frac{a}{2}\\frac{\\upsilon^2_0}{a^2}=\\frac{\\upsilon^2_0}{2a}"
Than we can find the acceleration:
"a=\\frac{\\upsilon^2_0}{2S}=\\frac{(55.7)^2}{2\\cdot{}1.24\\cdot{}10^3}=1.25" m/s2.
Answer:
a = 1.25 m/s2.
Comments
Leave a comment