Question #95007
an airplane lands and starts down the runway at a northwest velocity of 55.7 m/s. what constant acceleration allows it to come to a stop in 1.24 km? (in m/s^2)
1
Expert's answer
2019-09-23T09:17:22-0400

Solution:

υ=υ0at\upsilon=\upsilon_0-at

But

υ=0\upsilon=0

So:

υ0=at\upsilon_0=at

And than:

t=υ0at=\frac{\upsilon_0}{a}

Distance before the stopping:

S=υ0tat22=υ02aa2υ02a2=υ022aS=\upsilon_0t-\frac{at^2}{2}=\frac{\upsilon^2_0}{a}-\frac{a}{2}\frac{\upsilon^2_0}{a^2}=\frac{\upsilon^2_0}{2a}


Than we can find the acceleration:

a=υ022S=(55.7)221.24103=1.25a=\frac{\upsilon^2_0}{2S}=\frac{(55.7)^2}{2\cdot{}1.24\cdot{}10^3}=1.25 m/s2.


Answer:

a = 1.25 m/s2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS