Solution:
υ=υ0−at\upsilon=\upsilon_0-atυ=υ0−at
But
υ=0\upsilon=0υ=0
So:
υ0=at\upsilon_0=atυ0=at
And than:
t=υ0at=\frac{\upsilon_0}{a}t=aυ0
Distance before the stopping:
S=υ0t−at22=υ02a−a2υ02a2=υ022aS=\upsilon_0t-\frac{at^2}{2}=\frac{\upsilon^2_0}{a}-\frac{a}{2}\frac{\upsilon^2_0}{a^2}=\frac{\upsilon^2_0}{2a}S=υ0t−2at2=aυ02−2aa2υ02=2aυ02
Than we can find the acceleration:
a=υ022S=(55.7)22⋅1.24⋅103=1.25a=\frac{\upsilon^2_0}{2S}=\frac{(55.7)^2}{2\cdot{}1.24\cdot{}10^3}=1.25a=2Sυ02=2⋅1.24⋅103(55.7)2=1.25 m/s2.
Answer:
a = 1.25 m/s2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments