(a) In the absence of air drag
"v=\\sqrt{2gh}\\\\where\\ g=9.8\\ m\\ sec^{-1}\\\\h=1200\\ m\\\\v=\\sqrt{2\\times9.8\\times1200}=153.36\\ m\\ sec^{-1}"
(b) In the presence of air drag
net force at any time is given by
"ma=mg-\\frac{1}{2}\\rho _{air}C_{sphere}v^2A_{drop}"
"m=V\\times\\rho_{r}=\\frac{4\\pi}{3}\\times r^3\\times\\rho{r}=0.004188 kg \\\\A_{drop}=\\pi r^2=0.0000031416\\ m^2\\\\C=0.45"
"a=9.8-{\\frac{0.5}{0.004188}\\times1.21\\times 0.45\\times 0.0000031416\\times v^2}"
"a=9.8-0.00075v^2"
"a=\\frac{dv}{dt}=\\frac{dv}{dx}\\frac{dx}{dt}=\\frac{dv}{dx}\\times v"
"\\frac{dv}{dx}=\\frac{9.8-0.00075v^2}{v}=\\frac{9.8}{v}-0.00075v"
"\\overset{v}{\\int}\\frac{1}{(\\frac{9.8}{v}-0.00075v)}dv=\\overset{1.2}{\\int} dx"
"-\\frac{2000}{3}\\times ln(|3v^2-39200|)=1.2"
"ln(|3v^2-39200|)=-0.0018"
"3v^2-39200=1\\\\3v^2=39201\\\\v=114.31\\ m\\ sec^{-1}"
Comments
Leave a comment