(a) In the absence of air drag
v = 2 g h w h e r e g = 9.8 m s e c − 1 h = 1200 m v = 2 × 9.8 × 1200 = 153.36 m s e c − 1 v=\sqrt{2gh}\\where\ g=9.8\ m\ sec^{-1}\\h=1200\ m\\v=\sqrt{2\times9.8\times1200}=153.36\ m\ sec^{-1} v = 2 g h w h ere g = 9.8 m se c − 1 h = 1200 m v = 2 × 9.8 × 1200 = 153.36 m se c − 1
(b) In the presence of air drag
net force at any time is given by
m a = m g − 1 2 ρ a i r C s p h e r e v 2 A d r o p ma=mg-\frac{1}{2}\rho _{air}C_{sphere}v^2A_{drop} ma = m g − 2 1 ρ ai r C s p h ere v 2 A d ro p
m = V × ρ r = 4 π 3 × r 3 × ρ r = 0.004188 k g A d r o p = π r 2 = 0.0000031416 m 2 C = 0.45 m=V\times\rho_{r}=\frac{4\pi}{3}\times r^3\times\rho{r}=0.004188 kg \\A_{drop}=\pi r^2=0.0000031416\ m^2\\C=0.45 m = V × ρ r = 3 4 π × r 3 × ρ r = 0.004188 k g A d ro p = π r 2 = 0.0000031416 m 2 C = 0.45
a = 9.8 − 0.5 0.004188 × 1.21 × 0.45 × 0.0000031416 × v 2 a=9.8-{\frac{0.5}{0.004188}\times1.21\times 0.45\times 0.0000031416\times v^2} a = 9.8 − 0.004188 0.5 × 1.21 × 0.45 × 0.0000031416 × v 2
a = 9.8 − 0.00075 v 2 a=9.8-0.00075v^2 a = 9.8 − 0.00075 v 2
a = d v d t = d v d x d x d t = d v d x × v a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=\frac{dv}{dx}\times v a = d t d v = d x d v d t d x = d x d v × v
d v d x = 9.8 − 0.00075 v 2 v = 9.8 v − 0.00075 v \frac{dv}{dx}=\frac{9.8-0.00075v^2}{v}=\frac{9.8}{v}-0.00075v d x d v = v 9.8 − 0.00075 v 2 = v 9.8 − 0.00075 v
∫ v 1 ( 9.8 v − 0.00075 v ) d v = ∫ 1.2 d x \overset{v}{\int}\frac{1}{(\frac{9.8}{v}-0.00075v)}dv=\overset{1.2}{\int} dx ∫ v ( v 9.8 − 0.00075 v ) 1 d v = ∫ 1.2 d x
− 2000 3 × l n ( ∣ 3 v 2 − 39200 ∣ ) = 1.2 -\frac{2000}{3}\times ln(|3v^2-39200|)=1.2 − 3 2000 × l n ( ∣3 v 2 − 39200∣ ) = 1.2
l n ( ∣ 3 v 2 − 39200 ∣ ) = − 0.0018 ln(|3v^2-39200|)=-0.0018 l n ( ∣3 v 2 − 39200∣ ) = − 0.0018
3 v 2 − 39200 = 1 3 v 2 = 39201 v = 114.31 m s e c − 1 3v^2-39200=1\\3v^2=39201\\v=114.31\ m\ sec^{-1} 3 v 2 − 39200 = 1 3 v 2 = 39201 v = 114.31 m se c − 1
Comments