Question #94900
find the magnitude and direction of the resultant of a 10N-Force that acts angle 40 clockwise from the +x- axis, a 7-N force that acts an angle of 180 clockwise from the + y-axis, 5 -N force that acts at an angle 90 Clockwise from the +y-axis.
1
Expert's answer
2019-09-23T09:09:44-0400

The resultant force


R=F1+F2+F3{\bf R}=\bf F_1+F_2+F_3

Components of resultanf force


Rx=F1x+F2x+F3xR_x =F_{1x}+F_{2x}+F_{3x}

=10cos40+0+5=12.66N=10\cos 40^{\circ}+0+5=12.66\:\rm N

Ry=F1y+F2y+F3yR_y =F_{1y}+F_{2y}+F_{3y}

=10sin407+0=13.43N=-10\sin 40^{\circ}-7+0=-13.43\:\rm N

The magnitude of a resultant force


R=Rx2+Ry2=(12.66)2+(13.43)2=18.5NR=\sqrt{R_x^2+R_y^2}=\sqrt{(12.66)^2+(-13.43)^2}=18.5\:\rm N

The direction of a resultant force


θ=tan1(RyRx)\theta=\tan^{-1}\left(\frac{R_y}{R_x}\right)

=tan1(13.4312.66)=46.7(clockwise  from  the  +xaxis)=\tan^{-1}\left(\frac{-13.43}{12.66}\right)=46.7^{\circ}\quad ({\rm clockwise\;from\; the}\; +x\:\rm axis)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS