2019-09-17T17:16:11-04:00
a baseball is thrown upwards and leaves the hand at a height of 1.6 above the level playing field. the ball has an initial speed of 26 m/sec at an angle of 24 above the horizontal. determine the maximum height reached and the range
1
2019-09-19T09:46:26-0400
The maximum height:
H = h + ( v sin 24 ° ) 2 2 g H=h+\frac{(v\sin{24\degree})^2}{2g} H = h + 2 g ( v sin 24° ) 2
H = 1.6 + ( 26 sin 24 ° ) 2 2 ( 9.8 ) = 7.3 m H=1.6+\frac{(26\sin{24\degree})^2}{2(9.8)}=7.3\ m H = 1.6 + 2 ( 9.8 ) ( 26 sin 24° ) 2 = 7.3 m The range:
R = v 2 2 g ( 1 + 1 + 2 g h ( v sin 24 ° ) 2 ) sin ( 2 ( 24 ° ) ) R=\frac{v^2}{2g}\left(1+\sqrt{1+\frac{2gh}{(v\sin{24\degree})^2}}\right)\sin{(2(24\degree))} R = 2 g v 2 ( 1 + 1 + ( v sin 24° ) 2 2 g h ) sin ( 2 ( 24° ))
R = 2 6 2 2 ( 9.8 ) ( 1 + 1 + 2 ( 9.8 ) ( 1.6 ) ( 26 sin 24 ° ) 2 ) sin ( 48 ° ) = 55 m R=\frac{26^2}{2(9.8)}\left(1+\sqrt{1+\frac{2(9.8)(1.6)}{(26\sin{24\degree})^2}}\right)\sin{(48\degree)}=55\ m R = 2 ( 9.8 ) 2 6 2 ( 1 + 1 + ( 26 sin 24° ) 2 2 ( 9.8 ) ( 1.6 ) ) sin ( 48° ) = 55 m
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments