Question #94725
a baseball is thrown upwards and leaves the hand at a height of 1.6 above the level playing field. the ball has an initial speed of 26 m/sec at an angle of 24 above the horizontal. determine the maximum height reached and the range
1
Expert's answer
2019-09-19T09:46:26-0400

The maximum height:


H=h+(vsin24°)22gH=h+\frac{(v\sin{24\degree})^2}{2g}

H=1.6+(26sin24°)22(9.8)=7.3 mH=1.6+\frac{(26\sin{24\degree})^2}{2(9.8)}=7.3\ m

The range:


R=v22g(1+1+2gh(vsin24°)2)sin(2(24°))R=\frac{v^2}{2g}\left(1+\sqrt{1+\frac{2gh}{(v\sin{24\degree})^2}}\right)\sin{(2(24\degree))}

R=2622(9.8)(1+1+2(9.8)(1.6)(26sin24°)2)sin(48°)=55 mR=\frac{26^2}{2(9.8)}\left(1+\sqrt{1+\frac{2(9.8)(1.6)}{(26\sin{24\degree})^2}}\right)\sin{(48\degree)}=55\ m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS