Question #94633
A gun standing on sloping ground (see the figure below) fires up the slope. Show that the slant
range of the gun (measured along the slope) is
l =(2u*2cos*2θ/g cos α)(tan θ − tan α).
Here u is the magnitude of the initial velocity of the bullet
1
Expert's answer
2019-09-17T12:09:38-0400


If θ\theta and α\alpha are the angles between the horizontal and the velocity vector and the slope correspondingly, the horizontal range is:


R=L cosα=vxt=u cosθ t,R=L\space\text{cos}\alpha=v_xt=u\space\text{cos}\theta\space t,

where tt - time between the shot and the landing:


t=tup+tdown,t=t_{up}+t_{down},

L cosα=u cosθ (tup+tdown)              (1).L\space\text{cos}\alpha=u\space\text{cos}\theta\space (t_{up}+t_{down})\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1).

Time required for the bullet to reach the maximum height H=vy2/2gH=v_y^2/2g above the horizontal is



tup=vyg=u sinθg.t_{up}=\frac{v_y}{g}=\frac{u\space\text{sin}\theta}{g}.


Now equation (1) becomes


L cosα=u cosθ (u sinθg+tdown).L\space\text{cos}\alpha=u\space\text{cos}\theta\space \Big(\frac{u\space\text{sin}\theta}{g}+t_{down}\Big).

Express tdownt_{down}:


tdown=L cosαu cosθu sinθg       (2).t_{down}=\frac{L\space\text{cos}\alpha}{u\space\text{cos}\theta}-\frac{u\space\text{sin}\theta}{g}\space\space\space\space\space\space\space(2).

Then the bullet falls down from height HH to hh - height of the point of landing above the horizontal:


Hh=gtdown22, u2sin2θ2gh=gtdown22, h=u2sin2θ2ggtdown22.         (3)H-h=\frac{gt_{down}^2}{2},\\ \space\\ \frac{u^2\text{sin}^2\theta}{2g}-h=\frac{gt_{down}^2}{2},\\ \space\\ h=\frac{u^2\text{sin}^2\theta}{2g}-\frac{gt_{down}^2}{2}.\space\space\space\space\space\space\space\space\space(3)


On the other hand, since height hh is nothing like


h=L sinα,h=L\space\text{sin}\alpha,


we can substitute tdownt_{down} from (2) to (3) and get


L sinα=u2sin2θ2gg(L cosαu cosθu sinθg)22.L\space\text{sin}\alpha=\frac{u^2\text{sin}^2\theta}{2g}-\frac{g\Big(\frac{L\space\text{cos}\alpha}{u\space\text{cos}\theta}-\frac{u\space\text{sin}\theta}{g}\Big)^2}{2}.

Express LL:


L=2u2g[cos2θ tanθcosαsinα cos2θcos2α]= =2u2cos2θg cosα[tanθ tanα].L=\frac{2u^2}{g}\Big[\frac{\text{cos}^2\theta\space\text{tan}\theta}{\text{cos}\alpha}-\frac{\text{sin}\alpha\space\text{cos}^2\theta}{\text{cos}^2\alpha}\Big]=\\ \space\\ =\frac{2u^2\text{cos}^2\theta}{g\space\text{cos}\alpha}[\text{tan}\theta-\space\text{tan}\alpha].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
20.10.20, 14:17

Dear Michael Williams, H is the maximum height.

Michael Williams
19.10.20, 01:13

Where did "H" come from all of a sudden?

LATEST TUTORIALS
APPROVED BY CLIENTS