Answer to Question #94633 in Mechanics | Relativity for Ali Hamza

Question #94633
A gun standing on sloping ground (see the figure below) fires up the slope. Show that the slant
range of the gun (measured along the slope) is
l =(2u*2cos*2θ/g cos α)(tan θ − tan α).
Here u is the magnitude of the initial velocity of the bullet
1
Expert's answer
2019-09-17T12:09:38-0400


If "\\theta" and "\\alpha" are the angles between the horizontal and the velocity vector and the slope correspondingly, the horizontal range is:


"R=L\\space\\text{cos}\\alpha=v_xt=u\\space\\text{cos}\\theta\\space t,"

where "t" - time between the shot and the landing:


"t=t_{up}+t_{down},"

"L\\space\\text{cos}\\alpha=u\\space\\text{cos}\\theta\\space (t_{up}+t_{down})\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space(1)."

Time required for the bullet to reach the maximum height "H=v_y^2\/2g" above the horizontal is



"t_{up}=\\frac{v_y}{g}=\\frac{u\\space\\text{sin}\\theta}{g}."


Now equation (1) becomes


"L\\space\\text{cos}\\alpha=u\\space\\text{cos}\\theta\\space \\Big(\\frac{u\\space\\text{sin}\\theta}{g}+t_{down}\\Big)."

Express "t_{down}":


"t_{down}=\\frac{L\\space\\text{cos}\\alpha}{u\\space\\text{cos}\\theta}-\\frac{u\\space\\text{sin}\\theta}{g}\\space\\space\\space\\space\\space\\space\\space(2)."

Then the bullet falls down from height "H" to "h" - height of the point of landing above the horizontal:


"H-h=\\frac{gt_{down}^2}{2},\\\\\n\\space\\\\\n\\frac{u^2\\text{sin}^2\\theta}{2g}-h=\\frac{gt_{down}^2}{2},\\\\\n\\space\\\\\nh=\\frac{u^2\\text{sin}^2\\theta}{2g}-\\frac{gt_{down}^2}{2}.\\space\\space\\space\\space\\space\\space\\space\\space\\space(3)"


On the other hand, since height "h" is nothing like


"h=L\\space\\text{sin}\\alpha,"


we can substitute "t_{down}" from (2) to (3) and get


"L\\space\\text{sin}\\alpha=\\frac{u^2\\text{sin}^2\\theta}{2g}-\\frac{g\\Big(\\frac{L\\space\\text{cos}\\alpha}{u\\space\\text{cos}\\theta}-\\frac{u\\space\\text{sin}\\theta}{g}\\Big)^2}{2}."

Express "L":


"L=\\frac{2u^2}{g}\\Big[\\frac{\\text{cos}^2\\theta\\space\\text{tan}\\theta}{\\text{cos}\\alpha}-\\frac{\\text{sin}\\alpha\\space\\text{cos}^2\\theta}{\\text{cos}^2\\alpha}\\Big]=\\\\\n\\space\\\\\n=\\frac{2u^2\\text{cos}^2\\theta}{g\\space\\text{cos}\\alpha}[\\text{tan}\\theta-\\space\\text{tan}\\alpha]."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
20.10.20, 14:17

Dear Michael Williams, H is the maximum height.

Michael Williams
19.10.20, 01:13

Where did "H" come from all of a sudden?

Leave a comment

LATEST TUTORIALS
New on Blog