If "\\theta" and "\\alpha" are the angles between the horizontal and the velocity vector and the slope correspondingly, the horizontal range is:
"R=L\\space\\text{cos}\\alpha=v_xt=u\\space\\text{cos}\\theta\\space t," where "t" - time between the shot and the landing:
"t=t_{up}+t_{down},"
"L\\space\\text{cos}\\alpha=u\\space\\text{cos}\\theta\\space (t_{up}+t_{down})\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space(1)."
Time required for the bullet to reach the maximum height "H=v_y^2\/2g" above the horizontal is
"t_{up}=\\frac{v_y}{g}=\\frac{u\\space\\text{sin}\\theta}{g}."
Now equation (1) becomes
"L\\space\\text{cos}\\alpha=u\\space\\text{cos}\\theta\\space \\Big(\\frac{u\\space\\text{sin}\\theta}{g}+t_{down}\\Big)." Express "t_{down}":
"t_{down}=\\frac{L\\space\\text{cos}\\alpha}{u\\space\\text{cos}\\theta}-\\frac{u\\space\\text{sin}\\theta}{g}\\space\\space\\space\\space\\space\\space\\space(2)."
Then the bullet falls down from height "H" to "h" - height of the point of landing above the horizontal:
"H-h=\\frac{gt_{down}^2}{2},\\\\\n\\space\\\\\n\\frac{u^2\\text{sin}^2\\theta}{2g}-h=\\frac{gt_{down}^2}{2},\\\\\n\\space\\\\\nh=\\frac{u^2\\text{sin}^2\\theta}{2g}-\\frac{gt_{down}^2}{2}.\\space\\space\\space\\space\\space\\space\\space\\space\\space(3)"
On the other hand, since height "h" is nothing like
"h=L\\space\\text{sin}\\alpha,"
we can substitute "t_{down}" from (2) to (3) and get
"L\\space\\text{sin}\\alpha=\\frac{u^2\\text{sin}^2\\theta}{2g}-\\frac{g\\Big(\\frac{L\\space\\text{cos}\\alpha}{u\\space\\text{cos}\\theta}-\\frac{u\\space\\text{sin}\\theta}{g}\\Big)^2}{2}." Express "L":
"L=\\frac{2u^2}{g}\\Big[\\frac{\\text{cos}^2\\theta\\space\\text{tan}\\theta}{\\text{cos}\\alpha}-\\frac{\\text{sin}\\alpha\\space\\text{cos}^2\\theta}{\\text{cos}^2\\alpha}\\Big]=\\\\\n\\space\\\\\n=\\frac{2u^2\\text{cos}^2\\theta}{g\\space\\text{cos}\\alpha}[\\text{tan}\\theta-\\space\\text{tan}\\alpha]."
Comments
Dear Michael Williams, H is the maximum height.
Where did "H" come from all of a sudden?
Leave a comment