Question #94089
A particle of mass L=M²X^4/12 +MX²V<x>-V²<x>
Where V is some differentiable function of X. Find the equation of motion for X(t) and describe the physical nature of the system on the basis of this equation
1
Expert's answer
2019-09-09T11:14:42-0400

The Lagrangian for the particle with mass mm is:


L=m2x˙412+mx˙2V(x)V2(x).L=\frac{m^2\dot{x}^4}{12}+m\dot{x}^2 V(x)-V^2(x).

Differentiate by xx:


dLdx=mx˙2Vx2V(x)Vx.                  (1)\frac{dL}{dx}=m\dot{x}^2\frac{\partial V}{\partial x}-2V(x)\frac{\partial V}{\partial x}.\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1)

Differentiate the last equation by x˙\dot{x}:

Lx˙=13m2x˙3+2mx˙V(x).\frac{\partial L}{\partial\dot{x}}=\frac{1}{3}m^2\dot{x}^3+2m\dot{x}V(x).

Now differentiate by time:

ddt(Lx˙)=m2x˙2x¨+2mx¨V(x)+2mx˙2Vx      (2).\frac{d}{dt}\Big(\frac{\partial L}{\partial\dot{x}}\Big)=m^2\dot{x}^2\ddot{x}+2m\ddot{x}V(x)+2m\dot{x}^2\frac{\partial V}{\partial x}\space\space\space\space\space\space(2).

The Lagrange's equation:

ddt(Lx˙)Lx=0.\frac{d}{dt}\Big(\frac{\partial L}{\partial\dot{x}}\Big)-\frac{\partial L}{\partial{x}}=0.

Substitute (1) and (2) in the last equation:


m2x˙2x¨+2mx¨V(x)+2mx˙2Vxmx˙2Vx+2V(x)Vx=0,m^2\dot{x}^2\ddot{x}+2m\ddot{x}V(x)+2m\dot{x}^2\frac{\partial V}{\partial x}-\\ -m\dot{x}^2\frac{\partial V}{\partial x}+2V(x)\frac{\partial V}{\partial x}=0,

 m2x˙2x¨+2mx¨V(x)+mx˙2Vx+2V(x)Vx=0, (mx˙2+2V)(mx¨+Vx)=0.          (3)\space\\ m^2\dot{x}^2\ddot{x}+2m\ddot{x}V(x)+m\dot{x}^2\frac{\partial V}{\partial x}+2V(x)\frac{\partial V}{\partial x}=0,\\ \space\\ (m\dot{x}^2+2V)\Big(m\ddot{x}+\frac{\partial V}{\partial x}\Big)=0.\space\space\space\space\space\space\space\space\space\space(3)

That is the equation of motion.

A force can be expressed through potential as


Vx=Fx,                                       (4)\frac{\partial V}{\partial x}=-F_x,\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(4)

In equation (3) either of the pairs of parentheses equal to 0, so from the first parentheses divided by 2 we see it's the total energy equal to zero:


1/2mx˙2+V=0,1/2\cdot m\dot{x}^2+V=0,

from the second parentheses using equation (4)


mx¨=Vx,ma=Fx.m\ddot{x}=-\frac{\partial V}{\partial x},\\ ma=F_x.

That's Newton's second law.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
16.09.19, 16:49

Dear Joy, You're welcome. We are glad to be helpful. If you liked our service please press like-button beside answer field. Thank you!

Joy
15.09.19, 01:39

Thanks alot for the work done. You people really made my assignments less stressful. More grease to your elbow.

LATEST TUTORIALS
APPROVED BY CLIENTS