1)"m_1v'^2_1\/2+m_2v'^2_2\/2-(m_1u'^2_2\/2+m_2u'^2_2\/2)=0 ?"
For elastic collision we have
"m_1v^2_1\/2+m_2v^2_2\/2-(m_1u^2_2\/2+m_2u^2_2\/2)=0 ?"
From Galilean transformation we have v=v'+w "\\implies" v'=v-w
"m_1(v'_1+w)^2\/2+m_2(v'_2+w)^2\/2-(m_1(u'_1+w)^2\/2+m_2(u'_2+w)^2\/2)=0"
"m_1v'^2_1\/2+m_2v'^2_2\/2-(m_1u'^2_1\/2+m_2u'^2_2\/2)+w(P'_f+P'_i)=0 \\mapsto (P'_f+P'_i)=0 \u27f9"
"m_1(v'_1+w)^2\/2+m_2(v'_2+w)^2\/2-(m_1(u'_1+w)^2\/2+m_2(u'_2+w)^2\/2)=0 \u27f9"
"m_1v'^2_1\/2+m_2v'^2_2\/2-(m_1u'^2_1\/2+m_2u'^2_2\/2)=0"
2) For first observer
"E=m_0c^2(\\frac{1}{\\sqrt(1-v^2\/c^2)}-1)=9.1*10^{-31}*299 792 458^2(\\frac{1}{\\sqrt(1-0.82)}-1)=5.45*10^{-14} J =0.33MeV"
For second observer v2=?
"v2= \\frac{c2(v1-v)}{v1*v-c^2}=\\frac{c^2(0,5c-0,8c)}{0,5c*0,8c-c2}=0,5c"
"E=m_0c^2(\\frac{1}{\\sqrt(1-v^2_2\/c^2)}-1)=9.1*10^{-31}*299 792 458^2(\\frac{1}{\\sqrt(1-0.25)}-1)=1.27*10^{-14}J =0.079MeV"
3)
"t_0=t\\sqrt{(1-\\frac{v^2}{c^2})}=40*\\sqrt{(1-0.49)}=28.6min"
Comments
Leave a comment