Lets us find out the equation of maximum velocity when a train first accelerates with "\\alpha \\space m\/sec^2"
and then retards with "\\beta \\space m\/sec^2" with total time being "t" .
for acceleration time "t_1" :
"v=u+at_1"
This v will be "v_{max}=\\alpha t_1" .......(1) as u=0
For retardation time t2:
"v=u+at \\implies 0=\\alpha t_1-\\beta t_2" (as final velocity is zero)
"\\alpha t_1=\\beta t_2\n\\implies t_2=\\frac{ \\alpha}{ \\beta}\\times t_1"
Total time="t=t_1+t_2\\implies t_1+\\frac{ \\alpha}{ \\beta}\\times t_1=t"
"t_1=\\frac{\\beta t}{\\alpha +\\beta}".......(2)
Using (1) and (2)
"v_{max}=\\frac{\\alpha \\beta t}{\\alpha +\\beta}"
In this question "\\alpha ,\\beta" and "t" are 0.2"m\/sec^2" ,0.2"m\/sec^2" and 60 sec(1 min=60 sec) respectively.
"v_{max}=\\frac{0.2\\times0.2\\times60}{0.2+0 .2}=6m\/sec"
Comments
Leave a comment