Question #91695
Question 5
A “T” section consists of a vertical rectangle (Element 1) of width 8 mm and height 110 mm, and a horizontal rectangle (Element 2) of width 60 mm and height 10 mm.
Find the distance y from the horizontal bottom edge of the vertical
rectangle to the centroid of the “T” section, and the second moment of area, Ixx, of the “T” section about the centroidal horizontal axis.
1
Expert's answer
2019-07-23T15:53:20-0400

Y1=110+10/2=115mmY1 = 110+10/2=115 mm

Y2=110/2=55mmY2 = 110/2=55mm

A1=6010=600mm2A1= 60*10=600 mm^2

A2=8110=880mm2A2=8*110=880 mm^2

Y=(A1Y1+A2Y2)/(A1+A2)=(115600+55880)/(600+880)=79.32mmY= (A1*Y1+A2*Y2)/(A1+A2)= (115*600+55*880)/(600+880)=79.32mm

Moment of enertia rectangle 1:

I1=1/12bd3+a1h12I1=1/12*b*d^3+a1*h1^2

b = 60 mm

d = 10 mm

h1=10/2+(11079.32)=5+30.68=35.68mmh1=10/2+(110-79.32)=5+30.68=35.68 mm

I1=1/1260103+60035.683=7.69105mm4I1=1/12*60*10^3+600*35.683=7.69*10^5 mm^4

moment of inertia rectangle 2:

I2=1/12bd3+a2h22I2=1/12bd^3+a2h2^2

b = 8 mm

d = 110 mm

h2=79.3255=24.32mmh2=79.32-55=24.32 mm

I2=1/1281103+88024.322=14.07105mm4I2=1/12*8*110^3+880*24.322=14.07*10^5 mm^4

second moment of area x-axis:

Ixx=I1+I2=7.69105+14.07105=21.76105mm4Ixx=I1+I2=7.69*10^5+14.07*10^5=21.76*10^5mm^4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS