Answer to Question #89862 in Mechanics | Relativity for gerald
the motion of a particle is describe by x=10sin2t + 8cos2t. determine the period, amplitude and phase angle
1
2019-05-21T10:47:02-0400
"x = 10 \\sin 2t + 8 \\cos 2t""x = 2 \\sqrt{4^2 + 5^2} \\bigg(\\frac{5}{\\sqrt{4^2 + 5^2}} \\sin 2t + \\frac{4}{\\sqrt{4^2 + 5^2}} \\cos 2t\\bigg)"
Let us denote
"\\cos \\phi = \\frac{5}{\\sqrt{4^2+5^2}}" then
"\\sin \\phi = \\sqrt{1-\\cos^2 \\phi} = \\sqrt{1 - \\frac{5^2}{4^2 - 5^2}} = \\frac{4}{\\sqrt{4^2 + 5^2}}"
and
"\\phi = \\arctan \\frac{4}{5}"
Using
"\\cos \\phi \\sin 2t + \\sin \\phi \\cos 2t = \\sin (2t+\\phi)" we obtain
"x = 2 \\sqrt{41} \\sin(2t+\\phi)" The amplitude is
"2 \\sqrt{41}" the period is
"T = \\frac{2\\pi}{\\omega} = \\frac{2\\pi}{2} = \\pi" and the phase angle is
"\\phi = \\arctan \\frac{4}{5} = 0.67 \\approx 39^\\circ"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment