Question #89862
the motion of a particle is describe by x=10sin2t + 8cos2t. determine the period, amplitude and phase angle
1
Expert's answer
2019-05-21T10:47:02-0400
x=10sin2t+8cos2tx = 10 \sin 2t + 8 \cos 2tx=242+52(542+52sin2t+442+52cos2t)x = 2 \sqrt{4^2 + 5^2} \bigg(\frac{5}{\sqrt{4^2 + 5^2}} \sin 2t + \frac{4}{\sqrt{4^2 + 5^2}} \cos 2t\bigg)

Let us denote

cosϕ=542+52\cos \phi = \frac{5}{\sqrt{4^2+5^2}}

then

sinϕ=1cos2ϕ=1524252=442+52\sin \phi = \sqrt{1-\cos^2 \phi} = \sqrt{1 - \frac{5^2}{4^2 - 5^2}} = \frac{4}{\sqrt{4^2 + 5^2}}


and

ϕ=arctan45\phi = \arctan \frac{4}{5}

Using

cosϕsin2t+sinϕcos2t=sin(2t+ϕ)\cos \phi \sin 2t + \sin \phi \cos 2t = \sin (2t+\phi)

we obtain

x=241sin(2t+ϕ)x = 2 \sqrt{41} \sin(2t+\phi)

The amplitude is

2412 \sqrt{41}

the period is

T=2πω=2π2=πT = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi

and the phase angle is


ϕ=arctan45=0.6739\phi = \arctan \frac{4}{5} = 0.67 \approx 39^\circ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS