Question #87342
1. What are the properties of two vectors a and b such that
(a) a+b = c
(b) a+b = a-b
(c) a+b = c and a^2 + b^2 = c^2
2. Given two vectors a = 3i + 2j, b = -1 + 7j. Find a vector c such that a+b+c = 0.
3. Consider two vectors, one of magnitude 3 units and the other of magnitude 4 units. Show how the displacement vectors may be combined to obtain a resultant displacement of magnitude.
(a) 7 units
(b) 1 unit
(c) 5 units
1
Expert's answer
2019-04-02T10:53:08-0400

1.

(a) Vectors a and b lie in the same plane

(b) Vectors a and b are perpendicular to each other.

(с) Vectors a and b are perpendicular to each other.

2.For


a+b+c=0\vec{a}+\vec{b}+\vec{c}=0

then


a+b=c\vec{a}+\vec{b}=-\vec{c}a+b=3i+2ji+7j=2i+9j\vec{a}+\vec{b}=3i+2j-i+7j=2i+9j

and


c=(1)(a+b)=2j9j\vec{c}=(-1)(\vec{a}+\vec{b})=-2j-9j


3.For this problem use it


a+b=(a+b)2=a2+b2+2ab|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=a^2+b^2+2\vec{a}\cdot\vec{b}

where dot product

ab=abcos(ϕ)\vec{a}\cdot\vec{b}=|a| \cdot |b| \cdot cos(\phi)

(a) when angle between the two vectors is 0


a+b=(a+b)2=a2+b2+2ab=a+b|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{a^2+b^2+2ab }=a+b

a+b=4+3=7a+b=4+3=7

(b) when angle between the two vectors is 180

a+b=(a+b)2=a2+b22ab=ab|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{a^2+b^2-2ab }=a-b

ab=43=1a-b=4-3=1

(c) when angle between the two vectors is 90

a+b=(a+b)2=a2+b2|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^2}=\sqrt{a^2+b^2}

a2+b2=32+42=5\sqrt{a^2+b^2}=\sqrt{3^2+4^2}=5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Saidu Muhammad Abubakar
24.09.21, 02:36

Very good site, thank you for your support

LATEST TUTORIALS
APPROVED BY CLIENTS