Number of turns:
"n=\\frac{l}{2\\pi r}" The angle covered during deceleration
"\\theta=2\\pi n=\\frac{l}{ r}" The initial angular velocity
"\\omega=2\\pi (2)=4\\pi" Deceleration is
"\\alpha=\\frac{\\omega^2}{2\\theta}=\\frac{16\\pi^2}{2\\frac{25}{0.3}}=0.95 rad\/s^2"The number of revolutions it turns while stopping
"n=\\frac{25}{2\\pi (0.3)}=13"
Comments
Leave a comment