Question #87107
Derive expressions for potential energy and kinetic energy of an oscillating spring-
mass system
1
Expert's answer
2019-04-01T10:39:49-0400

The equation of harmonic motion:


x=Asin(ωt+ϕ0)x = A\sin(\omega t + \phi_0) , where ω=km\omega = \sqrt{\frac{k}{m}} in case oscillating spring-mass system.

ϕ0\phi_0 - initial oscillation phase (actually if it is, for example, π4-\frac{\pi}{4} we can rewrite it with cosine)

x˙=Acos(ωt+ϕ0)ω\dot x = A \cdot \cos(\omega t + \phi_0) \cdot \omega


Ek=mv22=mx˙22=m(Aωcos(ωt+ϕ0))22=mω2(Acos(ωt+ϕ0))22=mkm(Acos(ωt+ϕ0))22E_k = \frac{mv^2}{2} = \frac{m\dot x^2}{2} = \frac{m(A\omega \cos(\omega t + \phi_0))^2}{2} = \frac{m\omega^2(A \cos(\omega t + \phi_0))^2}{2} = \frac{m\frac{k}{m}(A \cos(\omega t + \phi_0))^2}{2} \Rightarrow



Ek=k(Acos(ωt+ϕ0))22=k(Acos(kmt+ϕ0))22E_k = \frac{k(A\cos(\omega t + \phi_0))^2}{2} = \frac{k(A\cos(\sqrt{\frac{k}{m}} t + \phi_0))^2}{2}

Ep=kx22E_p = \frac{kx^2}{2} \Rightarrow



Ep=k(Asin(ωt+ϕ0))22=k(Asin(kmt+ϕ0))22E_p = \frac{k(A\sin(\omega t + \phi_0))^2}{2} = \frac{k(A\sin(\sqrt{\frac{k}{m}} t + \phi_0))^2}{2}

As we can see expressions differ only in the initial phase (we can change the sine to cosine by changing the initial phase). with Pythagorean trigonometric identity:

Emechanical=Ep+Ek=kA22=constE_{mechanical} = E_p + E_k = \frac{kA^2}{2} = const



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS