The equation of harmonic motion:
x = A sin ( ω t + ϕ 0 ) x = A\sin(\omega t + \phi_0) x = A sin ( ω t + ϕ 0 ) , where ω = k m \omega = \sqrt{\frac{k}{m}} ω = m k in case oscillating spring-mass system.
ϕ 0 \phi_0 ϕ 0 - initial oscillation phase (actually if it is, for example, − π 4 -\frac{\pi}{4} − 4 π we can rewrite it with cosine)
x ˙ = A ⋅ cos ( ω t + ϕ 0 ) ⋅ ω \dot x = A \cdot \cos(\omega t + \phi_0) \cdot \omega x ˙ = A ⋅ cos ( ω t + ϕ 0 ) ⋅ ω
E k = m v 2 2 = m x ˙ 2 2 = m ( A ω cos ( ω t + ϕ 0 ) ) 2 2 = m ω 2 ( A cos ( ω t + ϕ 0 ) ) 2 2 = m k m ( A cos ( ω t + ϕ 0 ) ) 2 2 ⇒ E_k = \frac{mv^2}{2} = \frac{m\dot x^2}{2} = \frac{m(A\omega \cos(\omega t + \phi_0))^2}{2} = \frac{m\omega^2(A \cos(\omega t + \phi_0))^2}{2} =
\frac{m\frac{k}{m}(A \cos(\omega t + \phi_0))^2}{2} \Rightarrow E k = 2 m v 2 = 2 m x ˙ 2 = 2 m ( A ω c o s ( ω t + ϕ 0 ) ) 2 = 2 m ω 2 ( A c o s ( ω t + ϕ 0 ) ) 2 = 2 m m k ( A c o s ( ω t + ϕ 0 ) ) 2 ⇒
E k = k ( A cos ( ω t + ϕ 0 ) ) 2 2 = k ( A cos ( k m t + ϕ 0 ) ) 2 2 E_k = \frac{k(A\cos(\omega t + \phi_0))^2}{2} = \frac{k(A\cos(\sqrt{\frac{k}{m}} t + \phi_0))^2}{2} E k = 2 k ( A cos ( ω t + ϕ 0 ) ) 2 = 2 k ( A cos ( m k t + ϕ 0 ) ) 2
E p = k x 2 2 ⇒ E_p = \frac{kx^2}{2} \Rightarrow E p = 2 k x 2 ⇒
E p = k ( A sin ( ω t + ϕ 0 ) ) 2 2 = k ( A sin ( k m t + ϕ 0 ) ) 2 2 E_p = \frac{k(A\sin(\omega t + \phi_0))^2}{2} = \frac{k(A\sin(\sqrt{\frac{k}{m}} t + \phi_0))^2}{2} E p = 2 k ( A sin ( ω t + ϕ 0 ) ) 2 = 2 k ( A sin ( m k t + ϕ 0 ) ) 2
As we can see expressions differ only in the initial phase (we can change the sine to cosine by changing the initial phase). with Pythagorean trigonometric identity:
E m e c h a n i c a l = E p + E k = k A 2 2 = c o n s t E_{mechanical} = E_p + E_k = \frac{kA^2}{2} = const E m ec hani c a l = E p + E k = 2 k A 2 = co n s t
Comments