Question #86814
Q1.A perfectly balanced weight and platform are supported by a steady water jet as shown in the figure below. If the total weight supported is 900 N, determine the jet velocity. Diameter of the water jet is 5 cm.

Please help me
1
Expert's answer
2019-03-27T05:48:23-0400

F=900Nd=5cm=5102mρ=1000kgm3π3.14F = 900N \\ d = 5cm = 5 \cdot 10^{-2}m\\ \rho = 1000 \frac{kg}{m^3} \\ \pi \approx 3.14


Fp=Fw=FF_p = F_w = F

Newton's second law => FΔt=mvF\Delta t = mv (*)

Where m=Vρm = V\cdot\rho, because of V=Sh=SvΔt=π(d2)2vΔtV = S\cdot h = S\cdot v\Delta t = \pi\cdot (\frac{d}{2})^2 \cdot v\Delta t


FΔt=vρπ(d2)2vΔtF\Delta t = v \cdot \rho \cdot \pi\cdot (\frac{d}{2})^2 \cdot v\Delta t


F=ρπ(d2)2v2F = \rho \cdot \pi\cdot (\frac{d}{2})^2 \cdot v^2

v2=Fρπ(d2)2=900N1000kgm33.14(51022)2m2=458.5987(ms)2v^2 = \frac{F}{\rho \pi \cdot (\frac {d}{2})^2} = \frac{900N}{1000\frac{kg}{m^3} \cdot 3.14 \cdot (\frac {5 \cdot 10^{-2}} {2})^2m^2} = 458.5987 (\frac{m}{s})^2

Then the answer:

v=21.415msv = 21.415 \frac{m}{s}


(*):

F=maF=mv0ΔtFΔt=mvF = ma \\ F = m\frac{v - 0}{\Delta t} \\ F \Delta t = mv

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS